2

Generative Adversarial Networks-Based
Ground Motion Model for Crustal
Earthquakes in Japan Considering

Detailed Site Conditions

Yuma Matsumoto'2®, Taro Yaoyama'®”, Sangwon Lee'”, Takenori Hida®"”, and Tatsuya ltoi™

ABSTRACT
We develop a ground-motion model (GMM) for crustal earthquakes in Japan that can
directly model the probability distribution of ground motion acceleration time histories
based on generative adversarial networks (GANs). The proposed model can generate
ground motions conditioned on moment magnitude, rupture distance, and detailed site
conditions defined by the average shear-wave velocity in the top 5 m, 10 m, and 20 m
(Vss, Vsi0s Vsao) and the depth to shear-wave velocities of 1.0 km/s and 1.4 km/s (Z; ,
Z, 4)- We construct the neural networks based on styleGAN2 and introduce a novel neu-
ral network architecture to generate ground motions considering the effect of source,
path, and such detailed site conditions. The resulting 5% damped spectral acceleration
from the proposed GMM is consistent with empirical GMMs in terms of magnitude and
distance scaling. The proposed GMM can also generate ground motions accounting for
the shear-wave velocity profiles of surface soil with different magnitudes and distances,

and represent characteristic that are not explained solely by V3.
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KEY POINTS
« A novel deep generative model-based GMM is proposed, targeting strong-motion records in Japan.
« The probability distribution of ground motion and its source, path, and site conditions can be captured.

» Vss, Vsi0, V20, Z1.0, @and Z; 4 are used as proxies for site conditions.

Supplemental Material

INTRODUCTION

Ground-motion models (GMMs) are a critical component in probabilistic seismic hazard analysis (PSHA) (Cornell (1971);
Baker et al. (2021)), serving as significant inputs for earthquake engineering. The GMM can evaluate the median as well as
the variability of ground motions at a specific site, as functions of source characteristics, propagation path effects, and site
conditions. In Japan, various empirical GMMs have been constructed for crustal earthquakes, subduction zone earthquakes,
or both (e.g., Fukushima and Tanaka (1990); Molas and Yamazaki (1995); Si and Midorikawa (1999); Nishimura and Horike
(2003); Kanno et al. (2006); Zhao et al. (2006); Morikawa and Fujiwara (2013); Ghofrani and Atkinson (2014); Zhao et al.
(2016); Si et al. (2022)). These GMMs were developed using the abundant strong motion data recorded by networks such as
K-NET and KiK-net (National Research Institute for Earth Science and Disaster Resilience, 2019b). Some GMMs have been
constructed using a global database, while introducing a region-dependent term. This approach allows for the development
of GMMs with the vast amount of data obtained worldwide, while also taking regional characteristics into consideration.
For instance, in the Next Generation Attenuation-West2 (NGA-West2) project (Bozorgnia et al., 2014), a dataset for crustal
earthquakes was compiled (Ancheta et al., 2014) and GMMs that can be used in Japan were developed (Abrahamson et al.
(2014); Boore et al. (2014); Campbell and Bozorgnia (2014); Chiou and Youngs (2014)). For subduction zone earthquakes, in
NGA-Subduction (NGA-Sub) program (Bozorgnia et al., 2022), GMMs were developed in the same manners (Abrahamson
and Gulerce (2022); Parker et al. (2022); Kuehn et al. (2023)).

The aforementioned GMMs were constructed for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%
damped spectral acceleration. Consequently, hazard curves for these ground motion intensity measures are obtained by
PSHA. However, in recent years, it has become common to conduct non-linear dynamic response analysis using acceleration
time histories of ground motion as input (Vamvatsikos and Cornell, 2002) for detailed risk assessment of structures (Federal
Emergency Management Agency (FEMA), 2018). One approach to synthesizing ground motion time histories using GMMs
for dynamic response analysis involves the use of stochastic ground motion models (SGMMs) (e.g., Kameda (1994); Rezaeian
and Der Kiureghian (2008); Rezaeian and Der Kiureghian (2010)). In the SGMMs, ground motions are described by a non-
stationary stochastic model whose parameters are related to the source, path, and site conditions, and uncertainties in the

model parameters are accounted for to represent the variability of the ground motions under the given conditions. Another
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approach involves the selection and scaling of ground motions (e.g., Naeim et al. (2004); Bommer and Acevedo (2004); Baker
and Cornell (2006)). Ground motions are selected from compiled observed record databases to match the target response
spectrum under given conditions. Although this method is widely used in earthquake engineering, it does not always ensure
a sufficient number of records for a specific source, path, and site conditions.

In this study, we utilize a deep generative model to develop a GMM capable of directly modeling the ground motion time
history data. Deep generative models are probabilistic models that employ deep learning techniques. A key concept of a deep
generative model is its ability to capture the inherent distribution of the learned data, and to generate new data that follows
this learned distribution. In other words, instead of simply replicating the learned data, a generative model can generate a
set of new data that is statistically similar to the original by capturing its underlying probability distribution (Wang et al.,
2024). It is generally known that deep generative models, which consist of neural networks with many hidden layers, are
capable of learning high-dimensional and complex probability distributions (Ruthotto and Haber, 2021). By applying a deep
generative model for ground motion time history data, it is expected to be possible to construct probabilistic models for such
high-dimensional data, which has been difficult with existing empirical GMMs and SGMM:s. In this study, we refer to such
a deep generative model-based GMM as a ground motion generative model (GMGM). The GMGM could become one option
for the application of GMMs in earthquake engineering, such as in dynamic response analysis.

Several studies have examined the application of deep generative models for ground motions. Esfahani et al. (2021) utilized
an autoencoder on the Fourier amplitude spectra (FAS) of ground motions to estimate the minimum number of predictor
variables that is required for a GMM. They also used the trained autoencoder to generate FAS for specific magnitudes and
distances. Among the studies that applied deep generative models for ground motion time histories, generative adversar-
ial networks (GANs) (Goodfellow et al., 2014) have been widely adopted. Wang et al. (2019) and Li et al. (2020) examined
data augmentation by applying GANSs to the generation of ground motion time histories, targeting applications in earth-
quake detection problems. Similarly, Li et al. (2020) and Wang et al. (2021) have conducted studies on data augmentation
for ground motions using a technique called conditional GANs (cGAN) (Mirza and Osindero, 2014) that can specify the
generated data with some condition labels. Gatti and Clouteau (2020) proposed a method for generating ground motions
up to high-frequency components by combining physics-based simulation methods and GANSs. Grijalva et al. (2021) applied
GAN:S to the FAS of ground motions obtained in volcanic events. Matinfar et al. (2023) trained GANs on wavelet-transformed
ground motions and developed a method to generate ground motions matching a target response spectrum. Matsumoto et al.
(2023) trained GANSs for ground motion time histories, and demonstrated that the trained GANs model could adequately
approximate the distribution of observed record database. Addressing the characteristics of source, path, and site conditions,
similar to GMMs, Florez et al. (2022) demonstrated the capability of cGAN in generating ground motion time histories condi-
tioned on magnitude, distance, and the average shear-wave velocity in the top 30 meters (V3,). Following a similar approach,

Esfahani et al. (2022) developed a model named TFCGAN, which learns the time-frequency domain amplitudes of ground
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motions conditioned on magnitude, distance, and V;,. Additionally, they demonstrated how the time-frequency amplitudes
produced by the trained cGAN could be used to retrieve the ground motion time histories using a phase retrieval technique.
Shi et al. (2024) employed an extension of GANs, known as the generative adversarial neural operator (Rahman et al., 2022),
to construct a model capable of generating ground motion time histories conditioned on magnitude, distance, Vg3, and the
style of faulting.

Although various approaches were proposed to apply GANs for ground motion data, most studies have typically described
propagation path effects using the source distance and site conditions using Vg3,. However, such modeling is based on the
ergodic assumption (Anderson and Brune, 1999), which may lead to an overestimation of variability in ground motions.
Recently, studies on non-ergodic GMMs have been actively conducted to eliminate this ergodic assumption (Lavrentiadis
et al., 2023), and in Japan, site-specific GMMs (e.g., Akaba et al. (2024)) and non-ergodic GMMs (e.g., Sung et al. (2024))
have also been developed. Although such modeling can reduce variability, achieving this reduction requires an appropriate
modeling of source, path, and site effects. In GMGM, it is also important to address the ergodic assumption and to exam-
ine appropriate modeling methods. While the fully non-ergodic GMMs take into account all of the source, path, and site
effects, we initially focus on the site effects only. A GMGM that accounts for detailed site conditions could have a potential
to eliminate parts of the ergodic assumption.

In this study, we propose a GMGM for crustal earthquakes in Japan, considering detailed site conditions and utilizing
GANs on ground motion time history data. The proposed GMGM specifies site conditions using five condition labels: the
average shear-wave velocities in the top 5m, 10 m, 20 m (Vgs, V19, Vs20), and the depth to the layer with shear-wave velocities
of 1.0 km/s and 1.4 km/s (Z,, Z, 4). By combining these five site conditions with the moment magnitude (My,) and rup-
ture distance (Rgyp), the GMGM is trained on ground motion time history data conditioned on a seven-dimensional vector:
[My, Rrups Visss Vsi0s Vsaor Z1.0- Z1.4]- We also propose a novel neural network architecture that can generate ground motion
time histories with this seven-dimensional vectors. The quality and distribution of the generated ground motions from the
trained GMGM are evaluated, and the performance of the GMGM is demonstrated by comparing it with existing empirical
GMMs. We also discuss how well the specified site conditions correlate with the generated ground motions.

The structure of this paper is as follows. The TRAINING DATASETS section describes the dataset used for training of the
GMGM. The METHODS section outlines the GANs method and the proposed neural network architectures. The results of
the proposed GMGM are shown in ANALYSIS RESULTS AND MODEL EVALUATION section, and the CONCLUSION AND
DISCUSSION section presents conclusions and future perspectives based on the detailed site conditions-specified training
outcomes. The program code we used for deep learning is available in a GitHub repository (the link provided in DATA AND

RESOURCES).
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TRAINING DATASETS

Data selection and correction
To compile the training dataset, we collected observed records from shallow crustal earthquakes in Japan. The selection

criteria for the earthquakes and records are outlined below.

« Crustal earthquakes that occurred in the Eurasian plate between 1997 and 2016.
« Moment magnitude My, > 5.

« Hypocentral depth less than 30 km.

« Inclusion of both mainshocks and aftershocks that meet the above criteria.

« Observed records at the K-NET stations.

« The rupture distance Rpyp < 100 km.

+ Use the two horizontal components of ground motions assuming that they are independent.

Moment magnitude My, was determined using the moment tensor solution from the F-net (Full Range Seismograph Network
of Japan) database (National Research Institute for Earth Science and Disaster Resilience, 2024), and the lower threshold of
My, was set to 5.0 referring to the current practices in PSHA in Japan (Fujiwara et al., 2023). Rupture distance Rg;p was
calculated as the shortest distance from the rupture area to the station. When My, is enough small, and the earthquake can
be considered as a point source, Ry;p Was calculated as the hypocenter distance. The final training dataset consists of 21,696
records (after pre-processing) from 62 earthquakes. Each record is a horizontal one-component acceleration time history with
sampling rate of 100 Hz. Details of the selected earthquakes are further described in Matsumoto et al. (2023). The locations
of the earthquake epicenters and stations are shown in Figure 1, and the magnitude-distance distribution is shown in Figure
2.

It is important to note that the number of earthquakes in the compiled dataset is not very large. Although it is possible
to increase the number of target earthquakes included in the training dataset by lowering the magnitude threshold, small
My, values might introduce issues such as the magnitude of completeness (Wiemer and Wyss, 2000). Additionally, there is
a concern that the proportion of data within the magnitude range of interest in Japan’s PSHA would decrease in the overall
dataset, which could decrease the efficiency of the training. Although the characteristics of the datasets are different, the
final number of ground motion data, 21,696, is not too small compared to one of the datasets used for training the GANs
model of Karras et al. (2020). The proposed GMGM should be expanded to include, e.g., subduction-zone earthquakes, and
enable training with a larger dataset. However, such an examination is beyond the scope of this study and is left as a topic

for future studies.
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Parameters for site conditions

The K-NET database provides P-S logging results at one-meter intervals down to a depth of 20 meters from the surface at each
station. Although the GMGM could directly utilize this data as site conditions, we chose to represent surface soil conditions
with Vs, V10, and Vi, considering practical applications. Therefore, the surface soil is modeled as a three-layer structure
in the GMGM. In many existing GMMs, the surface soil conditions are expressed only by Vgs,. For comparative purposes,

we also calculated Vg, using the following empirical formula proposed by Kanno et al. (2006):

Vs30 = 1'13VSZO + 19.5 (1)

It is important to note that Vg, is not used as a model parameter in the GMGM but is only used for comparison. To account
for amplification by deep sedimentary layers, Morikawa and Fujiwara (2013) used Z; 4 in their GMM. Abrahamson et al.
(2014), Boore et al. (2014), and Chiou and Youngs (2014) used Z , as the parameter to represent that amplification. Referring
to these studies, we use both Z; ;, and Z, 4, as the site condition parameters of the GMGM. We obtained the values of Z;
and Z, 4 at the each station included in the complied dataset from the deep subsurface structural model V3.2 provided in
Japan Seismic Hazard Information Station (J-SHIS) (National Research Institute for Earth Science and Disaster Resilience,
2019a). It should be noted that the values of Z; ;, used in the above three GMMs refer to the depth from the ground surface,
whereas the values in J-SHIS database represent the depth from the engineering bedrock, thus the condition settings are
not strictly same. The engineering bedrock in the J-SHIS database used in this study is generally defined as the top of a
layer with a shear-wave velocity of 500-700 m/s (Fujiwara et al., 2012). Furthermore, Z; , and Z, , are selected primarily
for the purpose of comparison with existing GMMs, and may not necessarily be optimal as the parameters representing the
characteristics of ground motions in our dataset. A future task will be to figure out how to appropriately incorporate the
characteristics of deep sedimentary layers into the GMGMs. Through these procedures, we derived a seven-dimensional

vector [My,, Rrup» Vs, Vsios Vsaor Z1.0> Z1.4] as a condition label for each observed record.

Data pre-processing

In the compiled dataset, each ground motion was aligned with respect to the P-wave arrival time, which was manually deter-
mined by visually inspecting the waveform. Oscillations caused by different events, such as aftershocks occurring shortly
after the mainshock, were identified and removed based on visual inspection of the waveform. To increase the number of
training data, ground motion time histories, which were obtained by rotating the two horizontal components by 45 degrees
and separating each component, were added to the dataset. Florez et al. (2022) and Esfahani et al. (2022) used a 40-second-
long time window starting from the P-wave onset. However, in this study, we used a time window that is nearly twice as
long to ensure that the portions of large amplitude were retained for almost all observed records. The data length of each

ground motion was set to 7,992 (79.92 s) by truncating the end of each record. When the length of the original record was
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less than 7,992, zeros were appended to the end to equalize the data length across the dataset. This setting ensures that for
approximately 95% of the ground motions in the dataset, the time-window includes vibrations that account for at least 99%
of the total cumulative power. A cosine taper was applied to the final 100 steps, and 100 zeros were appended to the start
and finish of the records in order to lessen edge effects and stabilize the learning process. The sampling frequency was not
changed from 100 Hz, and no band-pass filter was applied. Consequently, ground motion acceleration time histories with a
duration of 81.92 s (8,192 samples), starting 1.0 second before the onset of the P-wave, were obtained.

Training of GANs models can be unstable (Arjovsky et al., 2017). To improve the stability of the learning process, nor-
malization techniques are commonly employed within the neural network architecture (Radford et al., 2016). Therefore, in
this study, the waveforms and their amplitudes are learned separately to improve model performance. Each observed record
amplitude was normalized by its PGA, and the PGA value was appended to the corresponding condition label to form an
eight-dimensional vector. Then, normalization was also performed on each element of the condition label vectors, ensuring

a mean of zero and a standard deviation of 0.1.

METHODS

GANs

GANSs consist of two deep neural networks: a generator G and a discriminator D. The generator G receives a noise vector
z ~N(0,I) as input to generate new data G(z) (referred to as generated data). The discriminator D takes both observed data
x and generated data G(z) as input and estimate the probability that the input is observed data. GANSs are trained through an
iterative process where the generator and the discriminator are alternately updated. The discriminator is trained to correctly
distinguish between the observed and generated data, whereas the generator attempts to produce data that the discriminator
will mistakenly identify as observed data. When appropriately trained through such procedures, the discriminator is known
to accurately capture the distribution of the learned dataset, enabling the generator to generate realistic new data that follows
this learned distribution (Ruthotto and Haber, 2021).

Florez et al. (2022) and Esfahani et al. (2022) used a GANs model known as Wasserstein GAN with gradient penalty
(WGAN-GP) (Gulrajani et al., 2017) to construct their models. In our previous study (Matsumoto et al., 2023), we also used
the WGAN-GP. However, in this study, we propose a model based on styleGAN2 (Karras et al., 2020), which has achieved
higher quality data generation, to construct the GMGM. As the preliminary analyses, we trained some different models using
the dataset compiled in the TRAINING DATASETS section. The model based on styleGAN2 was superior to the model based
on WGAN-GP in terms of the quality of the generated data and the accuracy in approximating the data distribution. A key
feature of styleGAN?2 is the architecture of its generator. The generator G of styleGAN2 is composed of two neural networks:
the mapping network f and the synthesis network g. The mapping network takes the noise vector z as input and output a

vector w, referred to as the intermediate latent variable. The synthesis network then takes this intermediate latent variable as
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input and output generated data g(w) (equivalent to G(z)). In conventional GANs, the generator learns the correspondence
between the noise vector z that follows a normal distribution and the observed data x. However, observed data x are typically
not distributed according to a normal distribution. By transforming the noise vector z into an intermediate latent variable w,
the input of the synthesis network is not sampled according to any fixed distribution, but its sampling density is induced by a
learned mapping f(z). This would make it easier for the synthesis network to learn the relationship between the intermediate
latent variables w and observed data x (Karras et al., 2021).

Following the method of Karras et al. (2020), we set the objective function for the generator training as follows:

min E, [10g(1 ~ D(G(z; O] + Evaeon (1o, ~ @)’ @

where € is the parameters of the generator, Jy, is the Jacobian matrix J,, = dg(w)/0w, and a is the constant. The first term
is the logistic loss of the normal GANs (Goodfellow et al., 2014), and the second term is the regularization term. Similarly,

we set the objective function for the discriminator training as follows:
min — E, [log D(x; $)] ~ E, [log(1 ~ D(G(2); $))] + 5 Ex [IVDGe: )] 3)

where 9 is the parameters of the discriminator, and y is the constant. The first and second terms are the logistic losses of the
normal GANs (Goodfellow et al., 2014), and the third term is the regularization term called R, regularization (Mescheder

et al., 2018).

Proposed neural network architecture of the GMGM
In this section, we introduce the overview of our newly proposed neural network architecture of the GMGM. For more
detailed information on the neural network architecture and their parameter settings, please refer to our GitHub repository.
The overall architecture of the GMGM is shown in Figure 3. The generator takes the noise vector as input and generates
a ground motion along with a corresponding condition label. The discriminator, receiving pairs of ground motion and con-
dition label as input, outputs the probability that the inputs are observed records. Since the conventional styleGAN2 model
cannot handle condition labels, we made several modifications to the network configurations of Karras et al. (2020). An
overview of the proposed neural network architecture of the generator is shown in Figure 4 (a). A new label generation net-
work h was added to generate the condition labels using the feature maps in the final layer of the synthesis network as input.
The architectures of the mapping network and synthesis network are almost same as the model configuration by Karras
et al. (2020), however, the parameters of the neural networks were modified to fit the data shape of the ground motions. The
mapping network consists of eight fully connected layers, using leaky ReLU (Maas et al., 2013) as the activation function.

Skip connection (Karras et al., 2018) is used to construct the synthesis network, and both ELU (Clevert et al., 2016) and leaky
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ReLU are used as the activation function. The label generation network consists of eight fully connected layers, with leaky
ReLU employed as the activation function.

An overview of neural network architecture of the discriminator is shown in Figure 4 (b). The discriminator receives
the ground motion data and label data in different neural networks. The neural network for the ground motion data was
constructed in the same way as the generator, modifying the neural network configurations and parameters of Karras et al.
(2020). The residual network (He et al., 2016) is utilized, and leaky ReLU is applied as the activation function. We introduced
a three fully connected layers for label data referring to a configuration called projection discriminator (Miyato and Koyama,
2018). The outputs of this introduced network are combined with the feature maps of the network for ground motion data
by taking inner product. Through this process, the discriminator is able to comprehend the information from the condition
labels in an appropriate manner (Miyato and Koyama, 2018).

In the preliminary numerical experiments, it was observed that altering the hyperparameters proposed by Karras et al.
(2020) tended to decrease the model performance. Therefore, most hyperparameters were determined according to Karras
et al. (2020). The learning rate was set to 0.002, the batch size was 64, and the dimensions of z and w were both set to
512. Adam (Kingma and Ba, 2017) was used as the optimization method. The deep learning and the construction of neural
networks were carried out using the Python library PyTorch (Paszke et al., 2019). For other hyperparameter settings, please

refer to our GitHub repository.

ANALYSIS RESULTS AND MODEL EVALUATION

The GMGM was trained using the compiled dataset, and the trained model generated 100,000 different ground motions and
corresponding condition labels. Several post-processing steps were performed on the each generated ground motion. Initially,
the offset was removed so that mean acceleration becomes zero. Then a fourth-order Butterworth filter was applied with 0.1
Hz low-frequency cutoff and 20 Hz high-frequency cutoff. The accelerations in the first and last two seconds were set to zero,
similar to the conditions of the training data. Finally, the amplitudes of each generated ground motion were recovered by
multiplying the values of PGA in the corresponding generated condition labels. In this section, we evaluate the performance

of the GMGM using these 100,000 generated ground motions and condition labels.

Generated ground motion waveforms

We first evaluate the performance of the GMGM by visually checking the generated data. Figures 5 and 6 show the ground
motion waveforms of observed records and generated ground motions for different magnitude, distance, and Vg3, scenarios,
respectively. The ground motion waveforms associated with other scenarios are shown in Figures S1-S4 of the supplementary
materials. For Figures 6, S2, and S4, we also show the corresponding raw generated ground motion waveforms (without
any post-processing) in Figures S5-S7 of the supplementary materials to confirm the impact of post-processing. Vg3, for

each generated ground motion was calculated from the generated V,, using equation 1. The GMGM appropriately captures
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waveform characteristics such as the onset of P-waves and S-waves, as well as the envelope shapes. The amplitude scaling
with magnitude and distance is generally well represented, and the relationships between distance and duration, as well
as between distance and P-S time, are also appropriate. Moreover, focusing on the values of Vg3, lower frequency ground
motions are generated in conditions of soft soil where V3, < 300 m/s, compared to those of stiff soil where V3, > 300 m/s. In
the data of row 3 and column 2 in Figures 5 and 6, a tendency for subsequent vibrations to have lower frequency components
in soft soil condition is also captured. The more detailed examinations of the correspondence between ground motions and

site conditions are conducted in Evaluation considering detailed site conditions subsection.

Overall characteristics of generated ground motions

A key characteristic of the GMGM is its ability to directly learn the probability distribution of ground motion time histories.
Therefore, we examine the distribution of the generated ground motions by comparing it with that of training dataset. The
evaluation is conducted by examining the following five indices used in Rezaeian and Der Kiureghian (2008) and Rezaeian

and Der Kiureghian (2010) to represent the characteristic of ground motions:

—

. Arias intensity, I 4.

N

. Significant/Relative duration of ground motion, D5_gs.

w

. Significant/Relative duration of ground motion, Ds_,s.
4. Zero-level crossing rate, v.

5. Mean of the rates of negative maxima and positive minima, 7.

Arias intensity (Arias, 1970) is a measure of total energy contained in the ground motion and is defined as:

td
I,= % fo a?(t)dt ()

where g is the gravitational acceleration, t, is the total duration of ground motion, and a(t) is the acceleration at time t. We
set g = 980.665 cm/s2. Significant duration (Bommer and Martinez-Pereira, 1999) is widely used as an index for assessing the
ground motion duration (Hancock and Bommer, 2006). The value of Ds_gs is defined as the time interval required for the
cumulative power of the ground motion to reach from 5% to 95% of the total cumulative power, and generally corresponds
to the duration of strong motion (Trifunac and Brady, 1975). Ds_,s is also defined as the time interval from 5% to 45%, and
corresponds to the time at the middle of the strong-shaking phase (Rezaeian and Der Kiureghian, 2010). The Zero-level
crossing rate v is adopted to characterize the dominant frequency in ground motion (Rezaeian and Der Kiureghian, 2008),
and we calculated the value of v as the mean of zero-level up-crossing rate and zero-level down-crossing rate. Negative
maxima and positive minima are used to characterize the bandwidth of ground motions (Rezaeian and Der Kiureghian,
2010). It is known that a ground motion with wider bandwidth tends to have larger 7. We defined 7 as the mean of the rates

of negative maxima and positive minima.
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We calculated the values of these five indices for both observed records and generated ground motions. Note that the values
of v and 7 were calculated for the vibrations in the time interval corresponding to Ds_y5, and observed records are filtered
with the same Butterworth filter used for post-processing of generated ground motions. Figure 7 shows the comparison
results of cumulative distribution function (CDF) of each index. Although the generated ground motions tend to have a
little smaller D5_,5 values, the distributions of I, and D5_g5 are consistent with that of observed records. This means that the
GMGM captures the temporal characteristic of observed records with reasonable accuracy. The distribution of v also shows
a good agreement. The distribution of 7 indicate that ground motions in the tails of the distribution of observed records are
not generated extensively, however, the overall distribution of generated ground motions is generally matched with that of
observed records. The GMGM captures the overall characteristics of the observed records in terms of both temporal and
frequency characteristics, and is an appropriate probabilistic model of ground motion time histories that approximates the

distribution of learned dataset.

Overall characteristics of generated condition labels
In our proposed GMGM, both the ground motion data and the corresponding condition labels are generated simultaneously.
This subsection compares the distribution of the generated condition labels with that of the training dataset.

First, the correlations among My, Rpyp and PGA are compared between the observed records and the generated data,
as shown in Figures 8 (a), (b), and (c). For all three labels, the distribution of the generated data generally matches that of
the observed records, and the correlations between the condition labels are appropriately modeled. Next, we compare the
distributions of the site condition labels, as shown in Figures 8 (d), (e), (f), and (g). It should be noted that the values of Z; ,
and Z, , used in this study represent the depth from the engineering bedrock. The distribution of each label of the generated
data also generally matches the distribution of the observed records. Regarding the correlations among the labels of surface
soil conditions, the trend that deeper layers tend to have higher shear-wave velocities is captured. Regarding the relationship
between Z, , and Z, 4, according to the definition of the index, Z; , < Z, ,. Figure 8 (g), which compares the relationship
between Z; ; and Z, 4, shows that the generated data satisfy this relationship. From these results, it can be concluded that the

generated condition labels approximate the distribution of the observed records in training dataset.

Examination of the latent space

In our previous study (Matsumoto et al., 2023), we examined the learning state of the GANs model by checking the distribu-
tion of the latent space. In this subsection, we investigate the distribution of the latent space W, where the latent variables
w are distributed. Because W c R52is a high-dimensional space and direct evaluation is difficult, we use UMAP (McInnes
et al., 2020), a dimensionality reduction technique, to visualize the latent space by transforming the latent variables into 2D
data. UMAP performs non-linear dimensionality reduction based on manifold learning and is widely used for visualization

of high-dimensional data.
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Targeting the 100,000 generated data points, we performed dimensionality reduction using UMAP on the corresponding
latent variables w. The analysis was conducted using the Python library umap-learn, with Euclidean distance as the metric
and the hyperparameters set to n_neighbors = 200 and min_dist = 0.4. The distribution of the latent variables w is shown in
Figure 9. As an example, the figure shows results color-coded by Arias intensity calculated from the generated ground motion
time histories, as well as the generated moment magnitude and rupture distance values. Other results, color-coded by other
ground motion characteristics indices used in the “Overall characteristics of generated ground motion” subsection and con-
dition labels, are available in Figure S8 of the supplementary materials. It is important to note that the UMAP dimensionality
reduction was performed solely on the latent variables w, without using any information about the corresponding gener-
ated ground motions or condition labels. Figure 9 demonstrates that generated data with similar Arias intensity, moment
magnitude, and rupture distance values are located close to each other in latent space. Moreover, the values of Arias inten-
sity are particularly high in the upper left and lower right of the distribution, corresponding to regions with larger moment
magnitudes and shorter rupture distances. The relationship between ground motion characteristics and condition labels is

generally appropriately even in the latent space, and the GMGM is considered to be well-trained.

Characteristics of near-field ground motions
Near-field ground motions containing strong velocity pulse have caused destructive damage to structures (e.g., Pitarka et al.
(1998); Lin et al. (2018)), and are one of the critical ground motions that should be considered in earthquake engineering.
Following the numerical integration of the generated ground motions, the Baker (2007) method was applied to classify and
extract the velocity pulses. In the numerical integration of the generated data, a fourth-order Butterworth filter (cutoff fre-
quency 0.2Hz) was used to remove the low frequency components to prevent the noise from them. It should be noted that
while the method of Baker (2007) was designed to be applied to the fault normal components of ground motions, the gener-
ated ground motions by the GMGM do not contain information on the positional relationship with the fault plane. Therefore,
it was applied directly to the generated ground motions.

First, following the evaluation in our previous study (Matsumoto et al., 2023), we compare the distribution of following

pulse indicator values proposed by Baker (2007):

1
Pulse indicator = 5)
1+ exp(—23.3 + 14.6v, + 20.5E,)

where v, is the PGV of the residual data, which is obtained by subtracting the extracted pulse from original velocity data, and
E, is the total accumulate power of residual data divided by that of original data. Pulse-like ground motion tends to have high
pulse indicator value. Figure 10 shows the CDF of the pulse indicator of observed records and generated ground motions.
Although the proportion of pulse-like ground motion in the generated data is slightly smaller than in the observed records

dataset, the overall trend of the distribution is generally consistent. Figure 11 shows the examples of the original velocity
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waveforms which were classified as pulse-like ground motion and corresponding extracted pulse waveforms. A clear velocity
pulse is found in generated ground motion with the near-filed setting. The proposed GMGM is capable of generating ground

motions with engineering-significant characteristic.

Statistical evaluation of the FAS

In this subsection, we conduct statistical performance evaluation of the GMGM. Following the evaluation method of Florez
et al. (2022) and Esfahani et al. (2022), we compare the distributions of observed and generated FAS with different My, Rgyyp,
and Vg, scenarios. Figure 12 compares the logarithmic means and logarithmic standard deviations (std) of the FAS of both
observed records and generated ground motions. The bins of the condition labels are determined so that enough number
of observed records are contained. The generated FAS are generally consistent with observed FAS in frequency range [1,
20] Hz. In comparisons under relatively small My, conditions, the generated ground motions contain many low frequency
components regardless of Rpp or Vs, resulting in an overestimation particularly in the region below 0.5 Hz. On the other
hand, in the region with larger magnitudes range 6.7 < My, < 6.9 (Figure 12 (a)), the generated data agree with the observed
records in wider frequency range [0.1, 20] Hz. This trend may be attributed to the influence of the generative processes of
the GMGM. The constraint that the acceleration returns to zero under normal conditions is not included in the GMGM. As
a result, regions with small amplitudes periodically experience slight deviations from the zero line, which could result in
low frequency noise. As small magnitude earthquakes do not cause oscillations with low frequency components, the effect
of low frequency noise is notably evident in the range of 5.5 < My, < 5.7 (Figure 12 (c)). The frequency bands for which the
distribution of the generated FAS agrees with the FAS of observed records are generally comparable to those examined in

Florez et al. (2022) and Esfahani et al. (2022).
Comparison with empirical GMMs
The generated results of the GMGM are compared with the prediction of the following two empirical GMMs:

1. Morikawa and Fujiwara (2013) (MF13) GMM

2. Abrahamson et al. (2014) (ASK14) GMM

Morikawa and Fujiwara (2013) proposed two models which differ in amplitude scaling with reference to magnitudes. We

utilize a model with a quadratic magnitude term and perform predictions using the following formula:

108, Sq = @ (Myr — My, )" + bReyp + ¢ — log,, (Reup +d - 10M97) + Gy + G, (6)
My = min(My,, My,) (7)
G = p, log,, (g A1) ®)

G, = p, log,, (min(Vs Ir/n(?x’ Vs30) ) ©)
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where S, is the spectral acceleration value for specific period, a, b, ¢, d, e, My, My, Pz, Ps> Zmin> a0d Vg ax are coefficients.
G, is the correction term for amplification by deep sedimentary layers, and G is the correction term for amplification by
shallow soft soils.

The ASK14 GMM contains some explanatory variables to specify the source conditions. Since the GMGM cannot take into
account such detailed source conditions, the following equation is used for the prediction, considering only terms related to

site conditions and the region-specific term:

log S, = f1(Myw, Reup) + f5(Sa1150, Vszo) + f10(Z1.0 Viszo) + Regional(Viszo, Reup) (10)

where Sa, 5, is the median spectral acceleration on hard rock. For detailed formulation of f;, fs, f1o, and Regional(-), please

refer to Abrahamson et al. (2014).

Distribution. Figure 13 compares the 5% damped spectral acceleration values at periods T =0.2 s and 1.0 s between the
generated ground motions and prediction results from the MF13 GMM and ASK14 GMM. The distance scaling of the GMGM
is generally consistent with the MF13 GMM, and the variability of the generated data is also in good agreement with the
prediction of the MF13 GMM. Compared to the median spectral acceleration values of the ASK14 GMM at T =0.2 s, the
values from the GMGM tend to be slightly higher, especially under soft soil conditions. However, the distributions of the

spectral acceleration values at T = 1.0 s are generally in agreement.

Residual analysis. The median values of the MF13 GMM and ASK14 GMM corresponding to the each generated condition
label are predicted, and the residual values (log, [gen/pre], gen is the generated data and pre is the median of the GMMs) are
calculated. To align the condition of the dataset, only generate data with My, > 5.5 is used for the MF13 GMM predictions.
Figure 14 shows the residuals with reference to My, Rgyp, V3o, and Z; , compared with the MF13 GMM. The residuals are
generally centered around zero regardless of My,, Vg3, and Z, 4, values, indicating that the GMGM has appropriately learned
the magnitude scaling as well as the amplification characteristics due to shallow soil and deep sedimentary layers. In terms
of distance scaling, there is a tendency to slightly overestimate in regions where Ry;p is large, and to slightly underestimate
in regions with short distances at T = 1.0 s. However, across a wide range, the residuals are generally centered around zero,
showing that the distance scaling of the GMGM is consistent with reasonable accuracy. Figure 15 shows the residual plots
of the GMGM against the ASK14 GMM prediction for each value of My, Rgyp, V3o, and Z, . The generated spectral accel-
erations tend to be slightly larger at T = 0.2 s, as also shown in Figure 13. However, the mean values of the residuals remain
relatively constant regardless of the values of My, Ryyp, Vs, and Z; ,. The ASK14 GMM includes a term that considers

the nonlinear site response based on the values of V3, and 5(\11180. Our proposed GMGM cas also capture the effect of such
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TABLE 1
Values of the condition labels in Figure 16

Condition label (i) (ii) (iii)
My 6.4 6.4 6.4
Rrup (km) 34 32 34

Vgso (M/s) 409 408 415
Zyo (M) 4.0 4.0 203
Z14 (M) 9.0 9.0 217
Vo_s (M/s) 134 238 289
Vs_10 (M/S) 512 402 338
U10-20 (m/S) 866 404 400

nonlinearity. These results confirms that the GMGM has adequately learned the scaling of magnitude and distance, as well

as of the amplifications by the shallow soil and deep sedimentary layers when compared with the ASK14 GMM.

Evaluation considering detailed site conditions
The performance of the GMGM is assessed in this subsection when site conditions are given in detail by looking at the
relationship between generated ground motions and condition labels. First, the shear-wave velocity profile modeled in three

layers for the top 20 meters is back-calculated from the generated values of Vs, Vg9, and Vi, as follows:

Vo5 = Vs
v _ VssVsio
0T 2V — Vo
205_19VssVs20
4vs_19V'ss — Us_10Vs20 — VissViso

1

U10-20 =

where vy_s, Us_;o, and v;y_,, are the average shear-wave velocity of the first-layer (0-5 m), second-layer (5-10 m), and third-
layer (10-20 m) of the surface soil, respectively. Subsequently, generated data with nearly identical values of My, Rgyp,
and Vg, which are used as condition labels of some GMGM (Florez et al. (2022); Esfahani et al. (2022)), are sampled.
Figure 16 presents the time-history waveforms, FAS, and corresponding velocity profiles for three generated samples, and
Table 1 represents the corresponding condition label values. Note that the FAS was smoothed using a Parzen window with a
bandwidth of 0.2 Hz. Even when the values of My, Rgyp, and Vs, are nearly the same, it is evident that the characteristics
of the ground motions differ significantly. In Figure 16, the generated ground motion in (i) has large amplitude, and has a
peak near 8 Hz in FAS, whereas the generated ground motion in (ii) has relatively smaller amplitude with a peak near 5 Hz
in FAS. Examining the corresponding shear-wave velocity profiles, the data for case (i) reveals a velocity profile where the
first-layer has a shear-wave velocity of v,_s = 134 m/s, and the second-layer has a shear-wave velocity of v,_s = 512 m/s. This
indicates a soft upper layer of 5 meters, underlain by a harder layer beyond 5 meters. Similarly, in case (ii), the top 5 meters

also consists of a soft layer, but v,_j is slightly larger than in (i), and the difference in shear-wave velocities between the first
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and second layer is smaller. The high frequency vibrations are amplified due to multiple reflections at the soft surface soil,
suggesting that the generated data in (i) shows larger amplitude and higher predominant frequency compared to (ii) due to
this amplification.

Furthermore, the data in (iii), while having similar amplitude and shear-wave velocity profile compared to (ii), contain
many low frequency components. The Z,; , and Z, , values for (iii) are relatively high, indicating that the generated ground
motions are also consistent with the effect of deep sedimentary layers. The GMGM is capable of representing characteristic

of ground motions that cannot be explained solely by Vs, value.

Distribution of generated ground motions with specified magnitude, distance, and detailed site
conditions

Our proposed GMGM models the joint distribution p(x, y) of ground motion data x and corresponding condition labels y, so
it cannot directly evaluate the conditional distribution p(x | y). When applying our proposed method to hazard analysis, the

distribution p(x | s,) under a specific scenario s, can be evaluated using rejection sampling (Tavaré et al., 1997) as follows.

1. Using the trained GMGM, generate N data points to obtain the dataset D = {(x;,y;) | i =1, ---, N}. Suppose that the joint
distribution is represented by this dataset.
N
p(2.2)=[] p(x:., | 2)p(2) (12)
i=1
where p(X,y | z) is modeled by the GMGM, Z = {z,, ---, zy}, and p(z) is the prior distribution of the noise vector.
2. Define the scenario to be specified as a random variable s. Here, s can be defined as y itself or as a subvector of y.
3. For a given scenario s, using some distance metric d(-, -) and a threshold € > 0, the conditional distribution p(x|s,) can

be evaluated as follows:

px|8,) = f f p(x,y | 2)p@Id(s, 5.) < )dydz 13)
ZJY

where Y ={y,, ---,y,}and I(-) is an indicator function.

In GANs model, for a given input z, a fixed output x, y is obtained. Thus, the p(x, y | z) is a delta function, and the probability
distribution p(x, y) is represented by the generated dataset D through a Monte Carlo representation. Therefore, the integral

calculation in equation 13 can be performed as follows:

1. From the generated dataset D, obtain the corresponding {s; |i =1, --- N} for each y,.
2. For each s;, accept those that satisfy d(s;, s,.) < € and reject the rest.

3. Retrieve the corresponding x* from D for each accepted s;.
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The x; obtained through the above procedure can be regarded as samples following the distribution p(x|s,). It is important
to note that to evaluate the distribution p(x | s,) using this procedure, the number of generated data points N of the dataset D
must be sufficiently large. In this paper, we set N = 100, 000. This decision was based on the observation that the distributions
shown in Figure 7-9 remain relatively unchanged with further data generation, and that a sufficient number of generated
samples could be secured through rejection sampling as examined below. Even if other examinations require a larger amount
of data, analyses with a larger N can be conducted at a reasonable computational cost, as the computational cost of GANs
data generation is low. In this subsection, we examine the distribution of generated ground motions when some different
scenarios are specified.

Initially, we consider a simple scenario where s = (My,, Rgyp, Vgio)T. Generated data fitting the following criteria were

sampled, and 131 data are obtained:

« 59<My <6.1
. 25 kmSRRUP S 35 km

* 404 m/s < Vg3, <426 m/s

We use the Euclidean distance as the metric d(-, -) for each element of s. The values of ¢ were also determined for each
element of s. The black dashed line with circles in Figure 17 (a) shows the mean and standard deviation of the acceleration
spectra for all 131 sampled generated ground motions. Among the 131 samples, we further extracted two clusters that share
similar shear-wave velocity profiles (Cases 1 and 2), i.e., considering s = (My,, Rgyps V30> Uo—s» Us—_10» U10—20) - - The red dashed
line with squares (Case 1) and blue dotted line with triangles (Case 2) in Figure 17 (a) shows the mean acceleration spectra of
the extracted clusters, and their corresponding shear-wave velocity profiles of each sampled data are shown in Figure 17 (b).

Note that the standard deviation of Case 1 and Case 2 are calculated together to ensure a sufficient sample size as follows:

(14)

\/(n1 —1)6% + (n, — 1)82
n+n,—2
where n, and n, are the number of data in Case 1 and 2, respectively, and 6% and c?% are the unbiased variance of data in Case 1
and 2, respectively. The mean acceleration spectra varies depending on the soil profile. For example, Case 1 has relatively soft
soil condition of top 5 meters, and the spectral acceleration of Case 1 at short period range had larger values. The standard
deviations at each period have decreased by specifying the shear-wave velocity profile, and the averaged standard deviation
for each period of Case 1 and Case 2 results in about 0.35. According to the study by Morikawa et al. (2008), the standard
deviation (total of the within-event and between-events) of the 5% damped spectral acceleration at specific station generally
ranges between 0.35 and 0.45. Hikita and Tomozawa (2023) studied the variability of spectral acceleration of single-path

ground motions, and the standard deviations approximately ranged between 0.3 and 0.5 in their examination. Although a
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strict comparison is challenging due to different settings, the standard deviation obtained in this study is considered to be
generally reasonable.

To examine the relationship between the characteristics of generated ground motions and the shear-wave velocity profiles,
the amplification spectra at the surface were calculated for Case 1 and Case 2 in Figure 17, considering the third layer (10-
20 m) as the reference layer. The analysis was based on the multiple reflection theory, assuming a linear layered structure.
Constant Q, value of 20 was used for damping, and the soil density of each layer was estimated from the shear-wave velocities
using the relationships of Gardner et al. (1974). Figure 17 (c) shows the amplification spectra for Case 1 and Case 2, as well as
the logarithmic mean of the FAS of the corresponding generated ground motions. The predominant frequencies of the ground
motion data match the peaks in the amplification spectra. Additionally, it can be observed that in Case 1, the difference in
shear-wave velocity between the first and third layers is greater than in Case 2, exhibiting higher predominant frequency.
Compared to Case 2, the FAS of Case 1 has more frequency components around 2 Hz. The values of Z , for the generated data
in Case 1 are generally between 30 and 60 meters, whereas the values for the generated data in Case 2 are approximately 4.0
meters. This indicates that the frequency characteristics are consistent with the characteristics of the amplification by deep
sedimentary layers. It can be concluded that the frequency characteristics of the generated ground motions are generally
consistent with the corresponding shear-wave velocity profiles. However, it should be noted that this analysis considers
linear site amplification. Given the response spectra values of Cases 1 and 2, it is necessary to consider the nonlinear site

response, and this examination focuses on the rough peaks of the spectra.

Data interpolation by GMGM
GANSs are known to generate new data samples by interpolating the distribution of a learned dataset (Luzi et al., 2021). In
this subsection, we evaluate the data interpolation of the GMGM for generated ground motions and condition labels.

First, Figure 8 (h) compares the distribution of My, and Vg, between the observed records dataset and generated data.
While no generated data correspond to the slightly included area of V3, > 1000 m/s in the training dataset, new data have
been generated within the region where observed records are distributed. For instance, there are no observed records cor-
responding to My, = 6.5 in the dataset, yet the GMGM also generates data for such regions. Looking at the residual plots in
Figure 14, the generated results for My, = 6.5 are consistent with the predictions of the MF13 GMM, indicating the validity
of the generated ground motions. The GMGM can generate data for combinations of condition labels that are not included
in the observed record database.

Next, we examine the case specifying My, Rgyp, and the shear-wave velocity profile. We again use the six generated ground
motions in Case 2 in Figure 17, which were selected from the 100,000 generated data to have almost identical values of My,
Rgups V30, and shear-wave velocity profile vy_s, Us_qg, and v;y_,o. Table 2 lists the values of My,, Rgyp, and site conditions

of the six generated ground motions in Case 2. Although Z, , and Z, , were not specified during data selection, these val-
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TABLE 2

Values of My, Rgyp, and site conditions of the six generated ground motions of Case 2 in Figure 17 (generated Data 1
to 6) and site condition values of K-NET station YMGO007. The values of the surface soil conditions of the YMG007
station were calculated using the P-S logging data of K-NET database. Since only shear-wave velocity profile up to 10
meters has been obtained at YMGO07 station in K-NET database, it is assumed that the shear-wave velocity from 10
meters to 20 meters is identical to the upper layer. Noted that the values of Z; ; and Z, 4 represent the depth from the
engineering bedrock as discussed in the TRAINING DATASETS section.

- My Rgyp (km) Vs3o vg—s (M/s) Us_19 (M/8) V1920 (M/S) Zio (m) Z14 (M) Data type
Data 1 6.0 29 416 249 377 422 3.9 10 Generated
Data 2 6.0 33 411 246 378 414 4.2 11 Generated
Data 3 6.0 31 418 254 380 420 4.0 10 Generated
Data 4 6.0 32 417 248 387 425 4.0 10 Generated
Data 5 6.0 33 420 249 382 430 3.9 10 Generated
Data 6 6.0 35 416 247 378 424 3.9 10 Generated
YMGO007 - - 418 260 400 400 4.0 10 Observed

ues are also nearly identical across all six ground motions. To investigate the cause of this trend, Table 2 also presents the
site conditions of the K-NET station YMGO007, whose records were included in the training dataset. The shear-wave veloc-
ities, Uy_s, Us_19, and vyy_,9, and the values of Z, , and Z, , at the YMGOO7 station closely align with those of generated
Data 1-6, indicating that the generated ground motions are dominated by the characteristics of the observed records at the
YMGOO07 station. This suggests that while the GMGM can interpolate data when only a few condition labels are considered,
as shown in Figure 8, such interpolation becomes more challenging as the number of considered condition labels increases.
This is because the number of corresponding observed records may become insufficient, leading to the generated data being
dominated by specific observed records. This will be discussed further in CONCLUSION AND DISCUSSION section.
Finally, we examine the case where only site conditions were specified. At YMGOO7 station, two observed records from dif-
ferent earthquakes are obtained in our training dataset. The relationships between these earthquakes and the YM G007 station
are shown in Figure 18. Then, generated data having the same site conditions as YMGO007 station are sampled, corresponding

to the following criteria:

e 225m/s <vy_5 <275m/s

* 355m/s <vs_;, <405m/s
e 395m/s < Vjp_y0 <445m/s
e 3m<Z;,<5m

. 91’1‘1SZI4S11H1

Figure 19 shows the magnitude-distance distribution of the two observed records at YMGOO7 station and the sampled gen-
erated data. Although no data have been generated for region where Ryy;p is approximately 100 km, it is evident that data
corresponding to combinations of magnitude and distance not included in the observed records have been generated even
when specifying detailed site conditions. Therefore, even when the number of considered condition labels is increased, the

GMGM is capable of generating data not included in the observed records dataset, provided that the number of condition
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TABLE 3
Rupture distance in the earthquake that occurred on March 12, 2011, in northern Nagano Perfecture and site
conditions of the target KiK-net staions in Figure 21.

Station Rgyp (km) Vg3 (M/S) Z1.4 (M)
TCGHO07 77.6 419.5 97.6
NGNH26 70.9 300.5 119.0
NIGH11 25.9 375.0 1651.3

labels used for interpolation remains small. For the data for 42 km < Rp;p < 44 km in Figure 19, time history waveforms and
their corresponding acceleration spectra and shear-wave velocity profiles are shown in Figure 20. The frequency character-
istics of generated ground motions are generally similar to the observed record, and the magnitude scaling of the amplitude

is generally appropriate.

Comparison with the observed records of KiK-net
To examine whether the proposed GMGM appropriately considers detailed site conditions, we compared the generated
ground motions with the observed records at KiK-net stations that were not used for the GMGM training. For the target
earthquake, we selected the earthquake that occurred on March 12, 2011, in northern Nagano Prefecture. Note that the
observed records from the K-NET stations for this earthquake are included in the GMGM training dataset. The moment
magnitude was 6.2, and the focal depth was 8.4 km. We selected three KiK-net observation stations: TCGH07, NGNH26, and
NIGH11. The epicenter of the earthquake and the locations of the stations are shown in Figure 21, and the rupture distances
and site conditions for each station are shown in Table 3.

For each target station, the values of v_s, Us_1q, and vyo_,, were derived from the P-S logging data of the KiK-net database.

From 100,000 generated data, we sampled the data that satisfied the following conditions:

« 6.1 <My <6.3.
 Rupture distance within [Rgyp — 5, Rgyp + 5] for each target station.

« Shear-wave velocity of the i-th layer v;(i = 1, 2, 3) within [0.9v;, 1.1v;] for each target station.

Asaresult, 13, 30, and 8 generated data samples were selected for the TCGH07, NGNH26, and NIGH11 stations, respectively.
The 5% damped response spectra of the observed records and the sampled generated ground motions are compared in Figure
22. Additionally, the median and +1 standard deviation interval of the MF13 GMM predictions are also shown. Note that the
observed records are shown for the NS and EW components at the ground surface. The shear-wave velocity profiles of the
stations and generated data are illustrated at the right panel of the response spectra. For TCGHO07 (Figure 22 (a)), although
the spectral accelerations of the observed records are slightly smaller in the period range above 0.5 s, the response spectra of
the observed records and the generated ground motions generally match. Particularly for components with periods below 0.3

s, the observed records and generated ground motions are in good agreement. In contrast, for NGNH26 (Figure 22 (b)), the
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spectral accelerations of the observed records are smaller across a wide period range, showing a tendency for the generated
ground motions to be overestimated. The NGNH26 station is located near the Itoigawa-Shizuoka Tectonic Line (ISTL), and
the region between the hypocenter and the ISTL has been noted as having a low Q attenuation structure (Nakamura and
Uetake (2002); Nakajima and Matsuzawa (2017)). In the proposed GMGM, propagation path effects are modeled solely based
on rupture distance. As a result, the GMGM could not adequately evaluate the influence of such propagation path structures.
For the NIGH11 station (Figure 22 (c)), the response spectra of the observed records and generated ground motions are in
good agreement compared to the analysis results at other stations. This is considered to result from the relatively short
rupture distance at the NIGH11 station. The observed record at the NIGH11 station may not be significantly affected by the
unmodeled propagation path effects.

In summary, under scenarios that consider detailed site conditions, our proposed GMGM can generally represent the
characteristics of observed records at the stations not used for training. However, our GMGM could not appropriately capture
the characteristics of the observed records that may be influenced by attenuation structures of the propagation path. To
evaluate the characteristics of ground motions at specific sites, it is essential to incorporate such effect in more detail within

the GMGM.

CONCLUSION AND DISCUSSION

In this study, we developed a GMM (GMGM) for crustal earthquakes in Japan that can directly generate ground motion
time histories with specifying detailed site conditions. The proposed GMGM were developed based on a type of deep gener-
ative model, called styleGAN2, and a novel neural network architecture that could serve as a generative model with detailed
condition labels were also proposed. The neural network architecture of the GMGM is capable of accounting for site condi-
tions with five values, [Vgs, V10, Vis20» Z1.0- Z1.4]), in addition to magnitude and distance information. We demonstrated that
the characteristics of the generated ground motions are consistent with these condition labels, and ground motions with
engineering-significant characteristic can be generated. Furthermore, the amplifications by shallow soil and deep sedimen-
tary layer were shown to be accurately represented, and the GMGM’s magnitude and distance scaling were shown to match
those of empirical GMMs. Additionally, by modeling the surface soil in three layers, the GMGM could express differences
in ground motion characteristics that could not be explained solely by V3, and generated new data samples with different
magnitude-distance settings even when detailed site conditions were specified.

The GMGM constructed in this study does not always produce high-quality ground motions, in some cases, significant
noises occur at the end of the waveform. Figure 23 shows an example of such generated result. This type of data tends to
be generated, although infrequently, under combinations of condition labels where there are fewer data points in training
dataset. The cause of this tendency might be attributed to the influence of the vibrations included in the observed records.

Subsequent vibrations believed to be caused by aftershocks were eliminated, as stated in the data preprocessing subsection.
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On the other hand, aftershocks left some vibrations that were difficult to pinpoint. Therefore, the observed records in our
training dataset might include vibrations like those in the time interval from 40 to 60 s in Figure 23, and it is conceivable that
the GMGM has learned such tendencies. The vibrations seen after about 75 s in Figure 23 are not mere noise but resemble
a ground motion. This could be due to the characteristics of convolutional neural networks (CNNs). The parts of neural
networks of the GMGM have constructed by CNNs, which are known to have a property called equivariance to translation
due to parameter sharing (Goodfellow et al., 2016). It is important to improve the performance of the GMGM by carefully
examining the data preprocessing procedures and the configuration of the neural networks suitable for generating ground
motion data.

GANs generate new data samples by interpolating the distribution of learned dataset. Although interpolation could
be performed when a few condition labels are specified, the site conditions specified by the five-dimensional vector
[Viss, Vsios Visaos Z1.0> Z1.4] Were not well-interpolated. This issue might stem from the curse of dimensionality. In the com-
piled dataset, there are 728 observation stations. The distribution of soil conditions defined by five-dimensional vectors is
relatively high-dimensional considering this number of stations. Data points may not be sufficiently dense for effective inter-
polation when many conditions are specified. This challenge is one of the difficulties in data-driven approaches. As more
condition labels are considered in detail for the source, path, and site conditions, the lack of data becomes a more significant
issue. Potential solutions to this problem about site conditions include increasing the number of observation stations used
in compiled dataset. The performance of the GMGM may be improved by including observed records at KiK-net stations,
as they were not used in this investigation. Using simulation-based techniques to estimate ground motion amplifications
and predict ground motions at the bedrock using GMGMs could be another way to solve this problem. This approach would
require detailed site condition information, and there is a possibility of bias because of the one-dimensional-based modeling
(Zhu et al., 2023). However, by combining the GMGM with simulation-based methods, it may be possible to address the
issues caused by the lack of data mentioned above in constructing the GMGM.

Previous studies applying GANs to GMM (Florez et al. (2022); Esfahani et al. (2022); Shi et al. (2024)) have constructed
models based on cGAN, specifying condition labels for generating ground motions. In contrast, this study generates ground
motions and condition labels from normal random inputs without specifying such labels. The advantages and disadvantages
of our method compared to cGAN based method are as follows. An advantage is its suitability for generating ground motions
when detailed condition labels are specified. As mentioned earlier, GANs approximate the distribution of the learned dataset,
making them unsuitable for generating data that would be a complete extrapolation from the dataset range. For example, in
the dataset used in this study, the moment magnitudes of the records range from 5.0 to 7.1, making it difficult for the GMGM to
generate ground motions for magnitudes like 4 or 8. The distribution of condition labels within the seven-dimensional space
is sparse, considering the number of available observed records. Since cGAN requires the specification of condition labels

to generate data, such sparsity could make it challenging to appropriately set these labels without exceeding the applicable
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range. Consequently, models that specify more detailed condition labels may generate ground motions that ideally should
not be generated. Such problems can be avoided by generating condition labels with ground motions at the same time.
On the other hand, a disadvantage of our method is the time required to generate ground motions that matches specific
condition labels. The frequency of generated data depends on its occurrence in the training dataset, which means data for
less common conditions is less likely to be generated. To utilize the GMGM in the filed of earthquake engineering, it is
necessary to construct a framework that incorporates rare-event simulation techniques (Bucklew and Bucklew, 2004), which
are studied in fields such as structural reliability (Au and Beck, 2001).

Additionally, while this study constructed GMGMs for one horizontal component of ground motions occurred in crustal
earthquakes, it is also important from the viewpoint of earthquake engineering to predict ground motions for subduction zone
earthquakes and to simultaneously predict three components. Expanding the application range of the GMGM is essential
and is a future task. Additionally, our proposed GMGM is a data-driven generative model and cannot be applied to scenarios
corresponding to extrapolation areas that are entirely absent from the learned dataset. For predictions that include such areas,
utilizing analysis results from physics-based ground motion simulation can be considered. In hazard analysis and engineering
applications, it is expected that by using our proposed GMGM and simulation methods according to the scenario, a broader

range of problem settings can be addressed. This type of analysis also remains a future task.

DATA AND RESOURCES

The strong motion records and the shear-wave velocity values of the surface soil used in this study can be downloaded through the
website of the National Research Institute for Earth Science and Disaster Resilience (NIED; https://www.kyoshin.bosai.go.
jp/kyoshin/). The moment magnitude was obtained from the NIED F-net database https://www. fnet.bosai.go.jp/, and
the values of Z; 3 and Z; 4 were obtained from the NIED J-SHIS website https://www.j-shis.bosai.go. jp/. The information
regarding the locations of the active segments of the Itoigawa-Shizuoka Tectonic Line was obtained from the Active Fault Database of
Japan (https://gbank.gsj.jp/activefault/index_e_gmap.html). The program code used in deep learning is available in
the GitHub repository https://github.com/Mat-main-00/ss_gmgm. The list of earthquakes and observation stations used for
training is also available on this GitHub repository. The supplementary material is available as a separated document, containing supple-
mental figures S1-S8, which include the ground motion waveforms generated by the constructed model and the distribution in the latent

space.
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Figure 1. Map of the training dataset showing the locations of the earthquake epicenters (circles) and stations (triangles).
Figure 2. Magnitude-distance distribution of the compiled training dataset.

Figure 3. Diagram of overall architecture of the GMGM.

Figure 4. Diagram of the neural network architecture of the proposed GMGM. (a) is the generator, and (b) is the
discriminator.

Figure 5. Examples of the ground motion waveforms of observed records. The data in each column correspond to the
value of My, shown at the top. Each panel shows the associated Ry;;p and Vg, values.

Figure 6. Examples of the ground motion waveforms generated by the GMGM. The data in each column correspond to
the value of My, shown at the top. Each panel shows the associated Rgyp and Vg, values.

Figure 7. Comparison of the cumulative distribution functions (CDF) for five indices of ground motions. The blue dashed
line is the CDF of observed records, and red solid line is the CDF of generated ground motions.

Figure 8. Comparison of the condition label distributions between observed records and generated data. (a) Rupture
distance and moment magnitude, (b) moment magnitude and PGA, (c) rupture distance and PGA, (d) Vg5 and Vg, (e)
V1o and Vg, () Vyo and Z, , (g) Z, o and Z, 4, and (h) My, and V. In each case, the left side represents the distribution
of observed records, and the right side represents the distribution of generated data.

Figure 9. The distribution of latent variables w reduced to two-dimensional data using UMAP. Each dot corresponds to
a sample of the generated data, and is color coded according to the values of (a) Arias intensity, (b) moment magnitude,
and (c) rupture distance.

Figure 10. Comparison of the CDF of the pulse indicator values. The blue dashed line represents the observed records,
and red solid line represents the generated ground motions.

Figure 11. Examples of the velocity waveforms and their corresponding extracted pulses. The left column is the observed
record and right column is the generated ground motion. The scenario My, Rgyp, and Vs, of each data is shown at the
top of each column.

Figure 12. Comparison of the logarithmic means and logarithmic standard deviations of the FAS across three different
My, ranges (a-c). Panels (a), (b), and (c) have three different Rgyp and Vs, scenarios, respectively. For each panel, the
blue dashed line corresponds to observed records, and the red solid line corresponds to generated ground motions.
Figure 13. Comparison of the 5% damped spectral acceleration values at periods T =0.2 s and 1.0 s between the gener-
ated ground motions and prediction results from the empirical GMMs. (a) represents the comparison results with the
MF13 GMM across three different My,, Rryp, Vs, and Z; 4 scenarios. (b) represents the comparison results with the

ASK14 GMM across three different My, Rpyp, Vs, and Z,  scenarios. The purple circles represents the generated ground
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motions, the blue solid line represents the median of the GMMs prediction, and the blue dashed line represents the +1
standard deviation interval. The corresponding values of My, and soil conditions are shown at the top of each panel.
Figure 14. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and
the median predictions of the MF13 GMM. Grey circles represent the residuals for each generated data, blue squares
indicate the mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the
residuals for a period of T = 0.2 s on the left and T = 1.0 s on the right.

Figure 15. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and
the median predictions of the ASK14 GMM. Grey circles represent the residuals for each generated data, blue squares
indicate the mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the
residuals for a period of T = 0.2 s on the left and T = 1.0 s on the right.

Figure 16. Examples of ground motion waveforms, FAS, shear-wave velocity profiles of generated data with almost same
My, Rpyp, and Vs, values.

Figure 17. The distribution of the generated ground motions with almost same magnitude, distance, and site conditions
scenarios. Panel (a) represents the means and standard deviations (in natural log units) of 5% damped acceleration spectra
for three scenarios. The black solid line with circles represent the distribution of generated acceleration spectra with
specified values of My, Rpyp, and V. The red dashed line with squares (Case 1) and blue dotted line with triangles
(Case 2) indicate the mean acceleration spectra of generated ground motions, which include additional specifications of
the shear-wave velocity profiles along with the aforementioned My, Rgyp, and V. The standard deviations for Case
1 and Case 2 are calculated together to ensure a sufficient sample size and are represented by a green dashed line with
inverted triangles. Panel (b) represents the corresponding shear-wave velocity profiles for each generated data of the
three scenarios. Panel (c) shows the logarithmic mean of the FAS of the generated ground motions for Case 1 and Case
2 (represented by red and blue solid lines, respectively), along with the amplification spectra (represented by the purple
dashed lines) derived from the shear-wave velocity profiles in Panel (b).

Figure 18. The locations of the YMG007 K-NET station (triangle) and earthquake epicenters (circles) whose ground
motions were observed at YMGOO07 station and contained in our training dataset. The focal mechanisms were obtained
from F-net database.

Figure 19. Magnitude-distance distribution of the observed records at YMGO007 K-NET station (blue circle) and generated
ground motions (red cross) with site conditions similar to YMGO0O07 station.

Figure 20. Ground motion waveforms (a), their corresponding acceleration spectra (b), and shear-wave velocity profiles
(c) that satisfy the condition 42 km < Rgyp < 44 km in Figure 19. The blue solid line represents the observed record at the

YMGO007 K-NET station, and red dashed line represent the generated data. The shear-wave velocity profile of the YMG007
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station was modeled with three layers based on the P-S logging data of the K-NET database. All condition label values for
the data shown in this figure are distributed within the range indicated at the top of the figure.

Figure 21. Locations of the epicenter of the earthquake and the target KiK-net stations TCGH07, NGNH26, and NIGH11.
The focal mechanism of the earthquake was obtained from the F-net database. The green lines represent the active seg-
ments of the Itoigawa-Shizuoka Tectonic Line (ISTL) obtained from the Active Fault Database of Japan (National Institute
of Advanced Industrial Science and Technology, 2024).

Figure 22. Comparison of shear-wave velocity profiles (left panels) and 5% damped response spectra (right panels) of the
observed records versus generated ground motions for the target KiK-net stations: (a) TCGHO07, (b) NGNH26, and (c)
NIGH11. The blue solid lines represent the observed records, the red dashed lines represent the generated data, the green
dash-dot lines represent the median of the MF13 GMM predictions, and the green dotted lines represent the +1 standard
deviation interval of the MF13 GMM predictions.

Figure 23. An example of generated ground motion waveform with subsequent oscillations showing large amplitude

noise. The values at the top of this figure represent the corresponding condition label values.
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Figure 1. Map of the training dataset showing the locations of the earthquake epicenters (circles) and stations (triangles).
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Figure 2. Magnitude-distance distribution of the compiled training dataset.
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Figure 4. Diagram of the neural network architecture of the proposed GMGM. (a) is the generator, and (b) is the discriminator.
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Figure 5. Examples of the ground motion waveforms of observed records. The data in each column correspond to the value of My,
shown at the top. Each panel shows the associated Rzp and Vg3, values.
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Figure 6. Examples of the ground motion waveforms generated by the GMGM. The data in each column correspond to the value of
My, shown at the top. Each panel shows the associated Ry;p and Vg3, values.
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Figure 7. Comparison of the cumulative distribution functions (CDF) for five indices of ground motions. The blue dashed line is the
CDF of observed records, and red solid line is the CDF of generated ground motions.
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Figure 8. Comparison of the condition label distributions between observed records and generated data. (a) Rupture distance and
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Figure 10. Comparison of the CDF of the pulse indicator values. The blue dashed line represents the observed records, and red
solid line represents the generated ground motions.
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Figure 11. Examples of the velocity waveforms and their corresponding extracted pulses. The left column is the observed record
and right column is the generated ground motion. The scenario My, Rgryyp, and Vgso of each data is shown at the top of each
column.
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Figure 12. Comparison of the logarithmic means and logarithmic standard deviations of the FAS across three different My, ranges
(a-c). Panels (a), (b), and (c) have three different Rgyp and Vg3 scenarios, respectively. For each panel, the blue dashed line
corresponds to observed records, and the red solid line corresponds to generated ground motions.
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(a) MW = 69, V530 = 400m/s, 21.4 =40m (b) MW = 69, V530 = 400m/s, ZLO =50m

10’ ~
o~ ~
o £
IS £
[CAN G2
8" 3
T=02s T=10s T=02s T=10s
_y | MF13 MF13 - ASK14 ASK14
105 25 50 75 1000 25 50 75 100 105 25 50 75 1000 25 50 75 100
Rupture distance (km) Rupture distance (km) Rupture distance (km) Rupture distance (km)
MW =6.6, V530 = 200m/s, 21.4 =800m MW =6.6, V530 =200m/s, leo =300m
3
10 - >
% R & 2
IS £
[CAN S ]
8" 8
T=02s T=10s T=02s T=10s
| MF13 MF13 | ASK14 ASK14
109 25 50 75 1000 25 50 75 100 103 25 50 75 1000 25 50 75 100
Rupture distance (km) Rupture distance (km) Rupture distance (km) Rupture distance (km)
My, =5.8, Vs39 = 350m/s, Z1 4 = 10m My, = 5.8, Vs39 = 350m/s, Z1 o = 50m
__10° __10°
1S £
o 1 S 1
8 10 8 10
T=02s T=10s T=02s T=10s
_4 | MF13 MF13 _4 | ASK14 ASK14
103 25 50 75 1000 25 50 75 100 103 25 50 75 1000 25 50 75 100
Rupture distance (km) Rupture distance (km) Rupture distance (km) Rupture distance (km)

Figure 13. Comparison of the 5% damped spectral acceleration values at periods T =0.2 s and 1.0 s between the generated
ground motions and prediction results from the empirical GMMs. (a) represents the comparison results with the MF13 GMM
across three different My, Rryp, Vsao, and Z; 4 scenarios. (b) represents the comparison results with the ASK14 GMM across
three different My, Rrup, Vszo, and Z; o scenarios. The purple circles represents the generated ground motions, the blue solid line
represents the median of the GMMs prediction, and the blue dashed line represents the +1 standard deviation interval. The
corresponding values of My, and soil conditions are shown at the top of each panel.
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Figure 14. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and the
median predictions of the MF13 GMM. Grey circles represent the residuals for each generated data, blue squares indicate the
mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the residuals for a
period of T =0.2 s on the left and T =1.0 s on the right.
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Figure 15. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and the
median predictions of the ASK14 GMM. Grey circles represent the residuals for each generated data, blue squares indicate the
mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the residuals for a
period of T =0.2 s on the left and T =1.0 s on the right.
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Figure 16. Examples of ground motion waveforms, FAS, shear-wave velocity profiles of generated data with almost same My,
Rrup, and Vgzq values.
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Figure 17. The distribution of the generated ground motions with almost same magnitude, distance, and site conditions scenarios.
Panel (a) represents the means and standard deviations (in natural log units) of 5% damped acceleration spectra for three
scenarios. The black solid line with circles represent the distribution of generated acceleration spectra with specified values of My,
Rryp, and Vgzo. The red dashed line with squares (Case 1) and blue dotted line with triangles (Case 2) indicate the mean
acceleration spectra of generated ground motions, which include additional specifications of the shear-wave velocity profiles along
with the aforementioned My, Rgyp, and Vgzo. The standard deviations for Case 1 and Case 2 are calculated together to ensure a
sufficient sample size and are represented by a green dashed line with inverted triangles. Panel (b) represents the corresponding

shear-wave velocity profiles for each generated data of the three scenarios. Panel (c) shows the logarithmic mean of the FAS of

the generated ground motions for Case 1 and Case 2 (represented by red and blue solid lines, respectively), along with the
amplification spectra (represented by the purple dashed lines) derived from the shear-wave velocity profiles in Panel (b).
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Figure 18. The locations of the YMGO007 K-NET station (triangle) and earthquake epicenters (circles) whose ground motions were
observed at YMGOO07 station and contained in our training dataset. The focal mechanisms were obtained from F-net database.
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Figure 19. Magnitude-distance distribution of the observed records at YMGO007 K-NET station (blue circle) and generated ground
motions (red cross) with site conditions similar to YMGO0O07 station.
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Figure 20. Ground motion waveforms (a), their corresponding acceleration spectra (b), and shear-wave velocity profiles (c) that
satisfy the condition 42 km < Rpyp < 44 km in Figure 19. The blue solid line represents the observed record at the YMG007 K-NET
station, and red dashed line represent the generated data. The shear-wave velocity profile of the YMGO0O07 station was modeled
with three layers based on the P-S logging data of the K-NET database. All condition label values for the data shown in this figure
are distributed within the range indicated at the top of the figure.
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Figure 21. Locations of the epicenter of the earthquake and the target KiK-net stations TCGHO07, NGNH26, and NIGH11. The focal
mechanism of the earthquake was obtained from the F-net database. The green lines represent the active segments of the
Itoigawa—Shizuoka Tectonic Line (ISTL) obtained from the Active Fault Database of Japan (National Institute of Advanced
Industrial Science and Technology, 2024).
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Figure 22. Comparison of shear-wave velocity profiles (left panels) and 5% damped response spectra (right panels) of the
observed records versus generated ground motions for the target KiK-net stations: (a) TCGH07, (b) NGNH26, and (c) NIGH11.
The blue solid lines represent the observed records, the red dashed lines represent the generated data, the green dash-dot lines
represent the median of the MF13 GMM predictions, and the green dotted lines represent the +1 standard deviation interval of the

MF13 GMM predictions.
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Figure 23. An example of generated ground motion waveform with subsequent oscillations showing large amplitude noise. The
values at the top of this figure represent the corresponding condition label values.
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