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ABSTRACT

We develop a ground-motion model (GMM) for crustal earthquakes in Japan that can

directly model the probability distribution of ground motion acceleration time histories

based on generative adversarial networks (GANs). The proposed model can generate

ground motions conditioned on moment magnitude, rupture distance, and detailed site

conditions defined by the average shear-wave velocity in the top 5 m, 10 m, and 20 m

(𝑽𝐒𝟓, 𝑽𝐒𝟏𝟎, 𝑽𝐒𝟐𝟎) and the depth to shear-wave velocities of 1.0 km/s and 1.4 km/s (𝒁𝟏.𝟎,

𝒁𝟏.𝟒). We construct the neural networks based on styleGAN2 and introduce a novel neu-

ral network architecture to generate ground motions considering the effect of source,

path, and such detailed site conditions. The resulting 5% damped spectral acceleration

from the proposed GMM is consistent with empirical GMMs in terms of magnitude and

distance scaling. The proposed GMM can also generate ground motions accounting for

the shear-wave velocity profiles of surface soil with different magnitudes and distances,

and represent characteristic that are not explained solely by 𝑽𝐒𝟑𝟎.
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KEY POINTS

• A novel deep generative model-based GMM is proposed, targeting strong-motion records in Japan.

• The probability distribution of ground motion and its source, path, and site conditions can be captured.

• 𝑉S5, 𝑉S10, 𝑉S20, 𝑍1.0, and 𝑍1.4 are used as proxies for site conditions.

Supplemental Material

INTRODUCTION8

Ground-motion models (GMMs) are a critical component in probabilistic seismic hazard analysis (PSHA) (Cornell (1971);9

Baker et al. (2021)), serving as significant inputs for earthquake engineering. The GMM can evaluate the median as well as10

the variability of ground motions at a specific site, as functions of source characteristics, propagation path effects, and site11

conditions. In Japan, various empirical GMMs have been constructed for crustal earthquakes, subduction zone earthquakes,12

or both (e.g., Fukushima and Tanaka (1990); Molas and Yamazaki (1995); Si and Midorikawa (1999); Nishimura and Horike13

(2003); Kanno et al. (2006); Zhao et al. (2006); Morikawa and Fujiwara (2013); Ghofrani and Atkinson (2014); Zhao et al.14

(2016); Si et al. (2022)). These GMMs were developed using the abundant strong motion data recorded by networks such as15

K-NET and KiK-net (National Research Institute for Earth Science and Disaster Resilience, 2019b). Some GMMs have been16

constructed using a global database, while introducing a region-dependent term. This approach allows for the development17

of GMMs with the vast amount of data obtained worldwide, while also taking regional characteristics into consideration.18

For instance, in the Next Generation Attenuation-West2 (NGA-West2) project (Bozorgnia et al., 2014), a dataset for crustal19

earthquakes was compiled (Ancheta et al., 2014) and GMMs that can be used in Japan were developed (Abrahamson et al.20

(2014); Boore et al. (2014); Campbell and Bozorgnia (2014); Chiou and Youngs (2014)). For subduction zone earthquakes, in21

NGA-Subduction (NGA-Sub) program (Bozorgnia et al., 2022), GMMs were developed in the same manners (Abrahamson22

and Gulerce (2022); Parker et al. (2022); Kuehn et al. (2023)).23

The aforementioned GMMs were constructed for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%24

damped spectral acceleration. Consequently, hazard curves for these ground motion intensity measures are obtained by25

PSHA. However, in recent years, it has become common to conduct non-linear dynamic response analysis using acceleration26

time histories of ground motion as input (Vamvatsikos and Cornell, 2002) for detailed risk assessment of structures (Federal27

Emergency Management Agency (FEMA), 2018). One approach to synthesizing ground motion time histories using GMMs28

for dynamic response analysis involves the use of stochastic groundmotionmodels (SGMMs) (e.g., Kameda (1994); Rezaeian29

and Der Kiureghian (2008); Rezaeian and Der Kiureghian (2010)). In the SGMMs, ground motions are described by a non-30

stationary stochastic model whose parameters are related to the source, path, and site conditions, and uncertainties in the31

model parameters are accounted for to represent the variability of the ground motions under the given conditions. Another32
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approach involves the selection and scaling of groundmotions (e.g., Naeim et al. (2004); Bommer and Acevedo (2004); Baker33

and Cornell (2006)). Ground motions are selected from compiled observed record databases to match the target response34

spectrum under given conditions. Although this method is widely used in earthquake engineering, it does not always ensure35

a sufficient number of records for a specific source, path, and site conditions.36

In this study, we utilize a deep generative model to develop a GMM capable of directly modeling the ground motion time37

history data. Deep generative models are probabilistic models that employ deep learning techniques. A key concept of a deep38

generative model is its ability to capture the inherent distribution of the learned data, and to generate new data that follows39

this learned distribution. In other words, instead of simply replicating the learned data, a generative model can generate a40

set of new data that is statistically similar to the original by capturing its underlying probability distribution (Wang et al.,41

2024). It is generally known that deep generative models, which consist of neural networks with many hidden layers, are42

capable of learning high-dimensional and complex probability distributions (Ruthotto and Haber, 2021). By applying a deep43

generative model for ground motion time history data, it is expected to be possible to construct probabilistic models for such44

high-dimensional data, which has been difficult with existing empirical GMMs and SGMMs. In this study, we refer to such45

a deep generative model-based GMM as a ground motion generative model (GMGM). The GMGM could become one option46

for the application of GMMs in earthquake engineering, such as in dynamic response analysis.47

Several studies have examined the application of deep generativemodels for groundmotions. Esfahani et al. (2021) utilized48

an autoencoder on the Fourier amplitude spectra (FAS) of ground motions to estimate the minimum number of predictor49

variables that is required for a GMM. They also used the trained autoencoder to generate FAS for specific magnitudes and50

distances. Among the studies that applied deep generative models for ground motion time histories, generative adversar-51

ial networks (GANs) (Goodfellow et al., 2014) have been widely adopted. Wang et al. (2019) and Li et al. (2020) examined52

data augmentation by applying GANs to the generation of ground motion time histories, targeting applications in earth-53

quake detection problems. Similarly, Li et al. (2020) and Wang et al. (2021) have conducted studies on data augmentation54

for ground motions using a technique called conditional GANs (cGAN) (Mirza and Osindero, 2014) that can specify the55

generated data with some condition labels. Gatti and Clouteau (2020) proposed a method for generating ground motions56

up to high-frequency components by combining physics-based simulation methods and GANs. Grijalva et al. (2021) applied57

GANs to the FAS of groundmotions obtained in volcanic events. Matinfar et al. (2023) trained GANs onwavelet-transformed58

groundmotions and developed amethod to generate groundmotionsmatching a target response spectrum.Matsumoto et al.59

(2023) trained GANs for ground motion time histories, and demonstrated that the trained GANs model could adequately60

approximate the distribution of observed record database. Addressing the characteristics of source, path, and site conditions,61

similar to GMMs, Florez et al. (2022) demonstrated the capability of cGAN in generating groundmotion time histories condi-62

tioned onmagnitude, distance, and the average shear-wave velocity in the top 30meters (𝑉S30). Following a similar approach,63

Esfahani et al. (2022) developed a model named TFCGAN, which learns the time-frequency domain amplitudes of ground64
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motions conditioned onmagnitude, distance, and𝑉S30. Additionally, they demonstrated how the time-frequency amplitudes65

produced by the trained cGAN could be used to retrieve the ground motion time histories using a phase retrieval technique.66

Shi et al. (2024) employed an extension of GANs, known as the generative adversarial neural operator (Rahman et al., 2022),67

to construct a model capable of generating ground motion time histories conditioned on magnitude, distance, 𝑉S30, and the68

style of faulting.69

Although various approaches were proposed to apply GANs for groundmotion data, most studies have typically described70

propagation path effects using the source distance and site conditions using 𝑉S30. However, such modeling is based on the71

ergodic assumption (Anderson and Brune, 1999), which may lead to an overestimation of variability in ground motions.72

Recently, studies on non-ergodic GMMs have been actively conducted to eliminate this ergodic assumption (Lavrentiadis73

et al., 2023), and in Japan, site-specific GMMs (e.g., Akaba et al. (2024)) and non-ergodic GMMs (e.g., Sung et al. (2024))74

have also been developed. Although such modeling can reduce variability, achieving this reduction requires an appropriate75

modeling of source, path, and site effects. In GMGM, it is also important to address the ergodic assumption and to exam-76

ine appropriate modeling methods. While the fully non-ergodic GMMs take into account all of the source, path, and site77

effects, we initially focus on the site effects only. A GMGM that accounts for detailed site conditions could have a potential78

to eliminate parts of the ergodic assumption.79

In this study, we propose a GMGM for crustal earthquakes in Japan, considering detailed site conditions and utilizing80

GANs on ground motion time history data. The proposed GMGM specifies site conditions using five condition labels: the81

average shear-wave velocities in the top 5m, 10m, 20m (𝑉S5,𝑉S10,𝑉S20), and the depth to the layer with shear-wave velocities82

of 1.0 km/s and 1.4 km/s (𝑍1.0, 𝑍1.4). By combining these five site conditions with the moment magnitude (𝑀𝑊) and rup-83

ture distance (𝑅𝑅𝑈𝑃), the GMGM is trained on ground motion time history data conditioned on a seven-dimensional vector:84

[𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S5, 𝑉S10, 𝑉S20, 𝑍1.0, 𝑍1.4]. We also propose a novel neural network architecture that can generate ground motion85

time histories with this seven-dimensional vectors. The quality and distribution of the generated ground motions from the86

trained GMGM are evaluated, and the performance of the GMGM is demonstrated by comparing it with existing empirical87

GMMs. We also discuss how well the specified site conditions correlate with the generated ground motions.88

The structure of this paper is as follows. The TRAINING DATASETS section describes the dataset used for training of the89

GMGM. The METHODS section outlines the GANs method and the proposed neural network architectures. The results of90

the proposedGMGMare shown inANALYSISRESULTSANDMODELEVALUATION section, and theCONCLUSIONAND91

DISCUSSION section presents conclusions and future perspectives based on the detailed site conditions-specified training92

outcomes. The program code we used for deep learning is available in a GitHub repository (the link provided in DATA AND93

RESOURCES).94
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TRAINING DATASETS95

Data selection and correction96

To compile the training dataset, we collected observed records from shallow crustal earthquakes in Japan. The selection97

criteria for the earthquakes and records are outlined below.98

• Crustal earthquakes that occurred in the Eurasian plate between 1997 and 2016.99

• Moment magnitude𝑀𝑊 > 5.100

• Hypocentral depth less than 30 km.101

• Inclusion of both mainshocks and aftershocks that meet the above criteria.102

• Observed records at the K-NET stations.103

• The rupture distance 𝑅𝑅𝑈𝑃 ≤ 100 km.104

• Use the two horizontal components of ground motions assuming that they are independent.105

Momentmagnitude𝑀𝑊 was determined using themoment tensor solution from the F-net (Full Range SeismographNetwork106

of Japan) database (National Research Institute for Earth Science and Disaster Resilience, 2024), and the lower threshold of107

𝑀𝑊 was set to 5.0 referring to the current practices in PSHA in Japan (Fujiwara et al., 2023). Rupture distance 𝑅𝑅𝑈𝑃 was108

calculated as the shortest distance from the rupture area to the station. When𝑀𝑊 is enough small, and the earthquake can109

be considered as a point source, 𝑅𝑅𝑈𝑃 was calculated as the hypocenter distance. The final training dataset consists of 21,696110

records (after pre-processing) from62 earthquakes. Each record is a horizontal one-component acceleration timehistorywith111

sampling rate of 100 Hz. Details of the selected earthquakes are further described in Matsumoto et al. (2023). The locations112

of the earthquake epicenters and stations are shown in Figure 1, and the magnitude-distance distribution is shown in Figure113

2.114

It is important to note that the number of earthquakes in the compiled dataset is not very large. Although it is possible115

to increase the number of target earthquakes included in the training dataset by lowering the magnitude threshold, small116

𝑀𝑊 values might introduce issues such as the magnitude of completeness (Wiemer and Wyss, 2000). Additionally, there is117

a concern that the proportion of data within the magnitude range of interest in Japan’s PSHA would decrease in the overall118

dataset, which could decrease the efficiency of the training. Although the characteristics of the datasets are different, the119

final number of ground motion data, 21,696, is not too small compared to one of the datasets used for training the GANs120

model of Karras et al. (2020). The proposed GMGM should be expanded to include, e.g., subduction-zone earthquakes, and121

enable training with a larger dataset. However, such an examination is beyond the scope of this study and is left as a topic122

for future studies.123
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Parameters for site conditions124

TheK-NET database provides P-S logging results at one-meter intervals down to a depth of 20meters from the surface at each125

station. Although the GMGM could directly utilize this data as site conditions, we chose to represent surface soil conditions126

with 𝑉S5, 𝑉S10, and 𝑉S20 considering practical applications. Therefore, the surface soil is modeled as a three-layer structure127

in the GMGM. In many existing GMMs, the surface soil conditions are expressed only by 𝑉S30. For comparative purposes,128

we also calculated 𝑉S30 using the following empirical formula proposed by Kanno et al. (2006):129

𝑉S30 = 1.13𝑉S20 + 19.5 (1)

It is important to note that 𝑉S30 is not used as a model parameter in the GMGM but is only used for comparison. To account130

for amplification by deep sedimentary layers, Morikawa and Fujiwara (2013) used 𝑍1.4 in their GMM. Abrahamson et al.131

(2014), Boore et al. (2014), and Chiou and Youngs (2014) used 𝑍1.0 as the parameter to represent that amplification. Referring132

to these studies, we use both 𝑍1.0 and 𝑍1.4 as the site condition parameters of the GMGM. We obtained the values of 𝑍1.0133

and 𝑍1.4 at the each station included in the complied dataset from the deep subsurface structural model V3.2 provided in134

Japan Seismic Hazard Information Station (J-SHIS) (National Research Institute for Earth Science and Disaster Resilience,135

2019a). It should be noted that the values of 𝑍1.0 used in the above three GMMs refer to the depth from the ground surface,136

whereas the values in J-SHIS database represent the depth from the engineering bedrock, thus the condition settings are137

not strictly same. The engineering bedrock in the J-SHIS database used in this study is generally defined as the top of a138

layer with a shear-wave velocity of 500–700 m/s (Fujiwara et al., 2012). Furthermore, 𝑍1.0 and 𝑍1.4 are selected primarily139

for the purpose of comparison with existing GMMs, and may not necessarily be optimal as the parameters representing the140

characteristics of ground motions in our dataset. A future task will be to figure out how to appropriately incorporate the141

characteristics of deep sedimentary layers into the GMGMs. Through these procedures, we derived a seven-dimensional142

vector [𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S5, 𝑉S10, 𝑉S20, 𝑍1.0, 𝑍1.4] as a condition label for each observed record.143

Data pre-processing144

In the compiled dataset, each groundmotion was aligned with respect to the P-wave arrival time, which was manually deter-145

mined by visually inspecting the waveform. Oscillations caused by different events, such as aftershocks occurring shortly146

after the mainshock, were identified and removed based on visual inspection of the waveform. To increase the number of147

training data, ground motion time histories, which were obtained by rotating the two horizontal components by 45 degrees148

and separating each component, were added to the dataset. Florez et al. (2022) and Esfahani et al. (2022) used a 40-second-149

long time window starting from the P-wave onset. However, in this study, we used a time window that is nearly twice as150

long to ensure that the portions of large amplitude were retained for almost all observed records. The data length of each151

ground motion was set to 7,992 (79.92 s) by truncating the end of each record. When the length of the original record was152
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less than 7,992, zeros were appended to the end to equalize the data length across the dataset. This setting ensures that for153

approximately 95% of the ground motions in the dataset, the time-window includes vibrations that account for at least 99%154

of the total cumulative power. A cosine taper was applied to the final 100 steps, and 100 zeros were appended to the start155

and finish of the records in order to lessen edge effects and stabilize the learning process. The sampling frequency was not156

changed from 100 Hz, and no band-pass filter was applied. Consequently, ground motion acceleration time histories with a157

duration of 81.92 s (8,192 samples), starting 1.0 second before the onset of the P-wave, were obtained.158

Training of GANs models can be unstable (Arjovsky et al., 2017). To improve the stability of the learning process, nor-159

malization techniques are commonly employed within the neural network architecture (Radford et al., 2016). Therefore, in160

this study, the waveforms and their amplitudes are learned separately to improve model performance. Each observed record161

amplitude was normalized by its PGA, and the PGA value was appended to the corresponding condition label to form an162

eight-dimensional vector. Then, normalization was also performed on each element of the condition label vectors, ensuring163

a mean of zero and a standard deviation of 0.1.164

METHODS165

GANs166

GANs consist of two deep neural networks: a generator 𝐺 and a discriminator 𝐷. The generator 𝐺 receives a noise vector167

𝐳 ∼𝒩(𝟎, 𝐈) as input to generate new data 𝐺(𝐳) (referred to as generated data). The discriminator 𝐷 takes both observed data168

𝐱 and generated data 𝐺(𝐳) as input and estimate the probability that the input is observed data. GANs are trained through an169

iterative process where the generator and the discriminator are alternately updated. The discriminator is trained to correctly170

distinguish between the observed and generated data, whereas the generator attempts to produce data that the discriminator171

will mistakenly identify as observed data. When appropriately trained through such procedures, the discriminator is known172

to accurately capture the distribution of the learned dataset, enabling the generator to generate realistic new data that follows173

this learned distribution (Ruthotto and Haber, 2021).174

Florez et al. (2022) and Esfahani et al. (2022) used a GANs model known as Wasserstein GAN with gradient penalty175

(WGAN-GP) (Gulrajani et al., 2017) to construct their models. In our previous study (Matsumoto et al., 2023), we also used176

the WGAN-GP. However, in this study, we propose a model based on styleGAN2 (Karras et al., 2020), which has achieved177

higher quality data generation, to construct the GMGM.As the preliminary analyses, we trained some differentmodels using178

the dataset compiled in the TRAININGDATASETS section. Themodel based on styleGAN2was superior to the model based179

on WGAN-GP in terms of the quality of the generated data and the accuracy in approximating the data distribution. A key180

feature of styleGAN2 is the architecture of its generator. The generator 𝐺 of styleGAN2 is composed of two neural networks:181

the mapping network 𝑓 and the synthesis network 𝑔. The mapping network takes the noise vector 𝐳 as input and output a182

vector𝐰, referred to as the intermediate latent variable. The synthesis network then takes this intermediate latent variable as183
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input and output generated data 𝑔(𝐰) (equivalent to 𝐺(𝐳)). In conventional GANs, the generator learns the correspondence184

between the noise vector 𝐳 that follows a normal distribution and the observed data 𝐱. However, observed data 𝐱 are typically185

not distributed according to a normal distribution. By transforming the noise vector 𝐳 into an intermediate latent variable𝐰,186

the input of the synthesis network is not sampled according to any fixed distribution, but its sampling density is induced by a187

learnedmapping𝑓(𝐳). This wouldmake it easier for the synthesis network to learn the relationship between the intermediate188

latent variables𝐰 and observed data 𝐱 (Karras et al., 2021).189

Following the method of Karras et al. (2020), we set the objective function for the generator training as follows:190

min
𝜽

𝔼𝐳 [log(1 − 𝐷(𝐺(𝐳; 𝜽)))] + 𝔼𝐰,𝐮∼𝒩(0,𝐈)
(‖‖‖‖𝐉

T
𝐰𝐮

‖‖‖‖2 − 𝑎
)2

(2)

where 𝜽 is the parameters of the generator, 𝐉𝐰 is the Jacobian matrix 𝐉𝐰 = 𝜕𝑔(𝐰)∕𝜕𝐰, and 𝑎 is the constant. The first term191

is the logistic loss of the normal GANs (Goodfellow et al., 2014), and the second term is the regularization term. Similarly,192

we set the objective function for the discriminator training as follows:193

min
𝝍

−𝔼𝐱 [log 𝐷(𝐱; 𝝍)] − 𝔼𝐳 [log(1 − 𝐷(𝐺(𝐳); 𝝍))] +
𝛾
2𝔼𝐱

[
‖∇𝐷(𝐱; 𝝍)‖2

]
(3)

where 𝝍 is the parameters of the discriminator, and 𝛾 is the constant. The first and second terms are the logistic losses of the194

normal GANs (Goodfellow et al., 2014), and the third term is the regularization term called 𝑅1 regularization (Mescheder195

et al., 2018).196

Proposed neural network architecture of the GMGM197

In this section, we introduce the overview of our newly proposed neural network architecture of the GMGM. For more198

detailed information on the neural network architecture and their parameter settings, please refer to our GitHub repository.199

The overall architecture of the GMGM is shown in Figure 3. The generator takes the noise vector as input and generates200

a ground motion along with a corresponding condition label. The discriminator, receiving pairs of ground motion and con-201

dition label as input, outputs the probability that the inputs are observed records. Since the conventional styleGAN2 model202

cannot handle condition labels, we made several modifications to the network configurations of Karras et al. (2020). An203

overview of the proposed neural network architecture of the generator is shown in Figure 4 (a). A new label generation net-204

work ℎwas added to generate the condition labels using the feature maps in the final layer of the synthesis network as input.205

The architectures of the mapping network and synthesis network are almost same as the model configuration by Karras206

et al. (2020), however, the parameters of the neural networks were modified to fit the data shape of the ground motions. The207

mapping network consists of eight fully connected layers, using leaky ReLU (Maas et al., 2013) as the activation function.208

Skip connection (Karras et al., 2018) is used to construct the synthesis network, and both ELU (Clevert et al., 2016) and leaky209
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ReLU are used as the activation function. The label generation network consists of eight fully connected layers, with leaky210

ReLU employed as the activation function.211

An overview of neural network architecture of the discriminator is shown in Figure 4 (b). The discriminator receives212

the ground motion data and label data in different neural networks. The neural network for the ground motion data was213

constructed in the same way as the generator, modifying the neural network configurations and parameters of Karras et al.214

(2020). The residual network (He et al., 2016) is utilized, and leaky ReLU is applied as the activation function. We introduced215

a three fully connected layers for label data referring to a configuration called projection discriminator (Miyato and Koyama,216

2018). The outputs of this introduced network are combined with the feature maps of the network for ground motion data217

by taking inner product. Through this process, the discriminator is able to comprehend the information from the condition218

labels in an appropriate manner (Miyato and Koyama, 2018).219

In the preliminary numerical experiments, it was observed that altering the hyperparameters proposed by Karras et al.220

(2020) tended to decrease the model performance. Therefore, most hyperparameters were determined according to Karras221

et al. (2020). The learning rate was set to 0.002, the batch size was 64, and the dimensions of 𝐳 and 𝐰 were both set to222

512. Adam (Kingma and Ba, 2017) was used as the optimization method. The deep learning and the construction of neural223

networks were carried out using the Python library PyTorch (Paszke et al., 2019). For other hyperparameter settings, please224

refer to our GitHub repository.225

ANALYSIS RESULTS AND MODEL EVALUATION226

The GMGMwas trained using the compiled dataset, and the trained model generated 100,000 different ground motions and227

corresponding condition labels. Several post-processing stepswere performed on the each generated groundmotion. Initially,228

the offset was removed so that mean acceleration becomes zero. Then a fourth-order Butterworth filter was applied with 0.1229

Hz low-frequency cutoff and 20 Hz high-frequency cutoff. The accelerations in the first and last two seconds were set to zero,230

similar to the conditions of the training data. Finally, the amplitudes of each generated ground motion were recovered by231

multiplying the values of PGA in the corresponding generated condition labels. In this section, we evaluate the performance232

of the GMGM using these 100,000 generated ground motions and condition labels.233

Generated ground motion waveforms234

We first evaluate the performance of the GMGM by visually checking the generated data. Figures 5 and 6 show the ground235

motion waveforms of observed records and generated ground motions for different magnitude, distance, and 𝑉S30 scenarios,236

respectively. The groundmotionwaveforms associatedwith other scenarios are shown in Figures S1–S4 of the supplementary237

materials. For Figures 6, S2, and S4, we also show the corresponding raw generated ground motion waveforms (without238

any post-processing) in Figures S5–S7 of the supplementary materials to confirm the impact of post-processing. 𝑉S30 for239

each generated ground motion was calculated from the generated 𝑉S20 using equation 1. The GMGM appropriately captures240
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waveform characteristics such as the onset of P-waves and S-waves, as well as the envelope shapes. The amplitude scaling241

with magnitude and distance is generally well represented, and the relationships between distance and duration, as well242

as between distance and P-S time, are also appropriate. Moreover, focusing on the values of 𝑉S30, lower frequency ground243

motions are generated in conditions of soft soil where𝑉S30 < 300m/s, compared to those of stiff soil where𝑉S30 > 300m/s. In244

the data of row 3 and column 2 in Figures 5 and 6, a tendency for subsequent vibrations to have lower frequency components245

in soft soil condition is also captured. The more detailed examinations of the correspondence between ground motions and246

site conditions are conducted in Evaluation considering detailed site conditions subsection.247

Overall characteristics of generated ground motions248

A key characteristic of the GMGM is its ability to directly learn the probability distribution of ground motion time histories.249

Therefore, we examine the distribution of the generated ground motions by comparing it with that of training dataset. The250

evaluation is conducted by examining the following five indices used in Rezaeian and Der Kiureghian (2008) and Rezaeian251

and Der Kiureghian (2010) to represent the characteristic of ground motions:252

1. Arias intensity, 𝐼𝐴.253

2. Significant/Relative duration of ground motion, 𝐷5−95.254

3. Significant/Relative duration of ground motion, 𝐷5−45.255

4. Zero-level crossing rate, 𝜈.256

5. Mean of the rates of negative maxima and positive minima, 𝜂.257

Arias intensity (Arias, 1970) is a measure of total energy contained in the ground motion and is defined as:258

𝐼𝐴 =
𝜋
2𝑔 ∫

𝑡𝑑

0
𝑎2(𝑡)d𝑡 (4)

where 𝑔 is the gravitational acceleration, 𝑡𝑑 is the total duration of ground motion, and 𝑎(𝑡) is the acceleration at time 𝑡. We259

set 𝑔 = 980.665 cm/s2. Significant duration (Bommer andMartínez-Pereira, 1999) is widely used as an index for assessing the260

ground motion duration (Hancock and Bommer, 2006). The value of 𝐷5−95 is defined as the time interval required for the261

cumulative power of the ground motion to reach from 5% to 95% of the total cumulative power, and generally corresponds262

to the duration of strong motion (Trifunac and Brady, 1975). 𝐷5−45 is also defined as the time interval from 5% to 45%, and263

corresponds to the time at the middle of the strong-shaking phase (Rezaeian and Der Kiureghian, 2010). The Zero-level264

crossing rate 𝜈 is adopted to characterize the dominant frequency in ground motion (Rezaeian and Der Kiureghian, 2008),265

and we calculated the value of 𝜈 as the mean of zero-level up-crossing rate and zero-level down-crossing rate. Negative266

maxima and positive minima are used to characterize the bandwidth of ground motions (Rezaeian and Der Kiureghian,267

2010). It is known that a ground motion with wider bandwidth tends to have larger 𝜂. We defined 𝜂 as the mean of the rates268

of negative maxima and positive minima.269
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We calculated the values of these five indices for both observed records and generated groundmotions. Note that the values270

of 𝜈 and 𝜂 were calculated for the vibrations in the time interval corresponding to 𝐷5−95, and observed records are filtered271

with the same Butterworth filter used for post-processing of generated ground motions. Figure 7 shows the comparison272

results of cumulative distribution function (CDF) of each index. Although the generated ground motions tend to have a273

little smaller 𝐷5−45 values, the distributions of 𝐼𝐴 and 𝐷5−95 are consistent with that of observed records. This means that the274

GMGM captures the temporal characteristic of observed records with reasonable accuracy. The distribution of 𝜈 also shows275

a good agreement. The distribution of 𝜂 indicate that ground motions in the tails of the distribution of observed records are276

not generated extensively, however, the overall distribution of generated ground motions is generally matched with that of277

observed records. The GMGM captures the overall characteristics of the observed records in terms of both temporal and278

frequency characteristics, and is an appropriate probabilistic model of ground motion time histories that approximates the279

distribution of learned dataset.280

Overall characteristics of generated condition labels281

In our proposed GMGM, both the groundmotion data and the corresponding condition labels are generated simultaneously.282

This subsection compares the distribution of the generated condition labels with that of the training dataset.283

First, the correlations among 𝑀𝑊 , 𝑅𝑅𝑈𝑃 and PGA are compared between the observed records and the generated data,284

as shown in Figures 8 (a), (b), and (c). For all three labels, the distribution of the generated data generally matches that of285

the observed records, and the correlations between the condition labels are appropriately modeled. Next, we compare the286

distributions of the site condition labels, as shown in Figures 8 (d), (e), (f), and (g). It should be noted that the values of 𝑍1.0287

and 𝑍1.4 used in this study represent the depth from the engineering bedrock. The distribution of each label of the generated288

data also generally matches the distribution of the observed records. Regarding the correlations among the labels of surface289

soil conditions, the trend that deeper layers tend to have higher shear-wave velocities is captured. Regarding the relationship290

between 𝑍1.0 and 𝑍1.4, according to the definition of the index, 𝑍1.0 ≤𝑍1.4. Figure 8 (g), which compares the relationship291

between 𝑍1.0 and 𝑍1.4, shows that the generated data satisfy this relationship. From these results, it can be concluded that the292

generated condition labels approximate the distribution of the observed records in training dataset.293

Examination of the latent space294

In our previous study (Matsumoto et al., 2023), we examined the learning state of the GANs model by checking the distribu-295

tion of the latent space. In this subsection, we investigate the distribution of the latent space𝒲, where the latent variables296

𝐰 are distributed. Because𝒲 ⊂ℝ512 is a high-dimensional space and direct evaluation is difficult, we use UMAP (McInnes297

et al., 2020), a dimensionality reduction technique, to visualize the latent space by transforming the latent variables into 2D298

data. UMAP performs non-linear dimensionality reduction based on manifold learning and is widely used for visualization299

of high-dimensional data.300
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Targeting the 100,000 generated data points, we performed dimensionality reduction using UMAP on the corresponding301

latent variables𝐰. The analysis was conducted using the Python library umap-learn, with Euclidean distance as the metric302

and the hyperparameters set to n_neighbors= 200 and min_dist= 0.4. The distribution of the latent variables𝐰 is shown in303

Figure 9. As an example, the figure shows results color-coded byArias intensity calculated from the generated groundmotion304

time histories, as well as the generated moment magnitude and rupture distance values. Other results, color-coded by other305

ground motion characteristics indices used in the “Overall characteristics of generated ground motion” subsection and con-306

dition labels, are available in Figure S8 of the supplementarymaterials. It is important to note that the UMAP dimensionality307

reduction was performed solely on the latent variables 𝐰, without using any information about the corresponding gener-308

ated ground motions or condition labels. Figure 9 demonstrates that generated data with similar Arias intensity, moment309

magnitude, and rupture distance values are located close to each other in latent space. Moreover, the values of Arias inten-310

sity are particularly high in the upper left and lower right of the distribution, corresponding to regions with larger moment311

magnitudes and shorter rupture distances. The relationship between ground motion characteristics and condition labels is312

generally appropriately even in the latent space, and the GMGM is considered to be well-trained.313

Characteristics of near-field ground motions314

Near-field ground motions containing strong velocity pulse have caused destructive damage to structures (e.g., Pitarka et al.315

(1998); Lin et al. (2018)), and are one of the critical ground motions that should be considered in earthquake engineering.316

Following the numerical integration of the generated ground motions, the Baker (2007) method was applied to classify and317

extract the velocity pulses. In the numerical integration of the generated data, a fourth-order Butterworth filter (cutoff fre-318

quency 0.2Hz) was used to remove the low frequency components to prevent the noise from them. It should be noted that319

while the method of Baker (2007) was designed to be applied to the fault normal components of ground motions, the gener-320

ated groundmotions by the GMGMdo not contain information on the positional relationshipwith the fault plane. Therefore,321

it was applied directly to the generated ground motions.322

First, following the evaluation in our previous study (Matsumoto et al., 2023), we compare the distribution of following323

pulse indicator values proposed by Baker (2007):324

Pulse indicator= 1
1 + exp(−23.3 + 14.6𝑣𝑟 + 20.5𝐸𝑟)

(5)

where 𝑣𝑟 is the PGV of the residual data, which is obtained by subtracting the extracted pulse from original velocity data, and325

𝐸𝑟 is the total accumulate power of residual data divided by that of original data. Pulse-like groundmotion tends to have high326

pulse indicator value. Figure 10 shows the CDF of the pulse indicator of observed records and generated ground motions.327

Although the proportion of pulse-like ground motion in the generated data is slightly smaller than in the observed records328

dataset, the overall trend of the distribution is generally consistent. Figure 11 shows the examples of the original velocity329
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waveforms which were classified as pulse-like groundmotion and corresponding extracted pulse waveforms. A clear velocity330

pulse is found in generated ground motion with the near-filed setting. The proposed GMGM is capable of generating ground331

motions with engineering-significant characteristic.332

Statistical evaluation of the FAS333

In this subsection, we conduct statistical performance evaluation of the GMGM. Following the evaluation method of Florez334

et al. (2022) and Esfahani et al. (2022), we compare the distributions of observed and generated FASwith different𝑀𝑊 , 𝑅𝑅𝑈𝑃,335

and 𝑉S30 scenarios. Figure 12 compares the logarithmic means and logarithmic standard deviations (std) of the FAS of both336

observed records and generated ground motions. The bins of the condition labels are determined so that enough number337

of observed records are contained. The generated FAS are generally consistent with observed FAS in frequency range [1,338

20] Hz. In comparisons under relatively small𝑀𝑊 conditions, the generated ground motions contain many low frequency339

components regardless of 𝑅𝑅𝑈𝑃 or 𝑉S30, resulting in an overestimation particularly in the region below 0.5 Hz. On the other340

hand, in the region with larger magnitudes range 6.7 ≤𝑀𝑊 ≤ 6.9 (Figure 12 (a)), the generated data agree with the observed341

records in wider frequency range [0.1, 20] Hz. This trend may be attributed to the influence of the generative processes of342

the GMGM. The constraint that the acceleration returns to zero under normal conditions is not included in the GMGM. As343

a result, regions with small amplitudes periodically experience slight deviations from the zero line, which could result in344

low frequency noise. As small magnitude earthquakes do not cause oscillations with low frequency components, the effect345

of low frequency noise is notably evident in the range of 5.5 ≤𝑀𝑊 ≤ 5.7 (Figure 12 (c)). The frequency bands for which the346

distribution of the generated FAS agrees with the FAS of observed records are generally comparable to those examined in347

Florez et al. (2022) and Esfahani et al. (2022).348

Comparison with empirical GMMs349

The generated results of the GMGM are compared with the prediction of the following two empirical GMMs:350

1. Morikawa and Fujiwara (2013) (MF13) GMM351

2. Abrahamson et al. (2014) (ASK14) GMM352

Morikawa and Fujiwara (2013) proposed two models which differ in amplitude scaling with reference to magnitudes. We353

utilize a model with a quadratic magnitude term and perform predictions using the following formula:354

log10 𝑆𝑎 = 𝑎
(
𝑀𝑊′ −𝑀𝑊1

)2 + 𝑏𝑅𝑅𝑈𝑃 + 𝑐 − log10
(
𝑅𝑅𝑈𝑃 + 𝑑 ⋅ 10𝑒𝑀𝑊′

)
+ 𝐺𝑑 +𝐺𝑠 (6)

𝑀𝑊′ =min(𝑀𝑊 , 𝑀𝑊0) (7)

𝐺𝑧 =𝑝𝑧 log10 (
max(𝑍min, 𝑍1.4)

𝑍0
) (8)

𝐺𝑠 =𝑝𝑠 log10 (
min(𝑉Smax , 𝑉S30)

𝑉0
) (9)
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where 𝑆𝑎 is the spectral acceleration value for specific period, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒,𝑀𝑊0 ,𝑀𝑊1 , 𝑝𝑧, 𝑝𝑠, 𝑍min, and𝑉Smax are coefficients.355

𝐺𝑧 is the correction term for amplification by deep sedimentary layers, and 𝐺𝑠 is the correction term for amplification by356

shallow soft soils.357

The ASK14 GMM contains some explanatory variables to specify the source conditions. Since the GMGM cannot take into358

account such detailed source conditions, the following equation is used for the prediction, considering only terms related to359

site conditions and the region-specific term:360

log 𝑆𝑎 =𝑓1(𝑀𝑊 , 𝑅𝑅𝑈𝑃) + 𝑓5(𝑆𝑎1180, 𝑉S30) + 𝑓10(𝑍1.0, 𝑉S30) + 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙(𝑉S30, 𝑅𝑅𝑈𝑃) (10)

where 𝑆𝑎1180 is themedian spectral acceleration on hard rock. For detailed formulation of 𝑓1, 𝑓5, 𝑓10, and 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙(⋅), please361

refer to Abrahamson et al. (2014).362

Distribution. Figure 13 compares the 5% damped spectral acceleration values at periods 𝑇 = 0.2 s and 1.0 s between the363

generated groundmotions and prediction results from theMF13GMMandASK14GMM. The distance scaling of the GMGM364

is generally consistent with the MF13 GMM, and the variability of the generated data is also in good agreement with the365

prediction of the MF13 GMM. Compared to the median spectral acceleration values of the ASK14 GMM at 𝑇 = 0.2 s, the366

values from the GMGM tend to be slightly higher, especially under soft soil conditions. However, the distributions of the367

spectral acceleration values at 𝑇 = 1.0 s are generally in agreement.368

Residual analysis. Themedian values of theMF13GMMandASK14GMMcorresponding to the each generated condition369

label are predicted, and the residual values (log10[gen∕pre], gen is the generated data and pre is themedian of the GMMs) are370

calculated. To align the condition of the dataset, only generate data with𝑀𝑊 ≥ 5.5 is used for the MF13 GMM predictions.371

Figure 14 shows the residuals with reference to𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.4 compared with the MF13 GMM. The residuals are372

generally centered around zero regardless of𝑀𝑊 ,𝑉S30, and 𝑍1.4 values, indicating that the GMGMhas appropriately learned373

the magnitude scaling as well as the amplification characteristics due to shallow soil and deep sedimentary layers. In terms374

of distance scaling, there is a tendency to slightly overestimate in regions where 𝑅𝑅𝑈𝑃 is large, and to slightly underestimate375

in regions with short distances at 𝑇 = 1.0 s. However, across a wide range, the residuals are generally centered around zero,376

showing that the distance scaling of the GMGM is consistent with reasonable accuracy. Figure 15 shows the residual plots377

of the GMGM against the ASK14 GMM prediction for each value of𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.0. The generated spectral accel-378

erations tend to be slightly larger at 𝑇 = 0.2 s, as also shown in Figure 13. However, the mean values of the residuals remain379

relatively constant regardless of the values of 𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.0. The ASK14 GMM includes a term that considers380

the nonlinear site response based on the values of 𝑉S30 and 𝑆𝑎1180. Our proposed GMGM cas also capture the effect of such381
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TABLE 1
Values of the condition labels in Figure 16

Condition label (i) (ii) (iii)

𝑀𝑊 6.4 6.4 6.4
𝑅𝑅𝑈𝑃 (km) 34 32 34
𝑉S30 (m/s) 409 408 415
𝑍1.0 (m) 4.0 4.0 203
𝑍1.4 (m) 9.0 9.0 217
𝑣0−5 (m/s) 134 238 289
𝑣5−10 (m/s) 512 402 338
𝑣10−20 (m/s) 866 404 400

nonlinearity. These results confirms that the GMGM has adequately learned the scaling of magnitude and distance, as well382

as of the amplifications by the shallow soil and deep sedimentary layers when compared with the ASK14 GMM.383

Evaluation considering detailed site conditions384

The performance of the GMGM is assessed in this subsection when site conditions are given in detail by looking at the385

relationship between generated ground motions and condition labels. First, the shear-wave velocity profile modeled in three386

layers for the top 20 meters is back-calculated from the generated values of 𝑉S5, 𝑉S10, and 𝑉S20 as follows:387

𝑣0−5 =𝑉S5

𝑣5−10 =
𝑉S5𝑉S10

2𝑉S5 −𝑉S10
(11)

𝑣10−20 =
2𝑣5−10𝑉S5𝑉S20

4𝑣5−10𝑉S5 − 𝑣5−10𝑉S20 −𝑉S5𝑉S20

where 𝑣0−5, 𝑣5−10, and 𝑣10−20 are the average shear-wave velocity of the first-layer (0-5 m), second-layer (5-10 m), and third-388

layer (10-20 m) of the surface soil, respectively. Subsequently, generated data with nearly identical values of 𝑀𝑊 , 𝑅𝑅𝑈𝑃,389

and 𝑉S30, which are used as condition labels of some GMGM (Florez et al. (2022); Esfahani et al. (2022)), are sampled.390

Figure 16 presents the time-history waveforms, FAS, and corresponding velocity profiles for three generated samples, and391

Table 1 represents the corresponding condition label values. Note that the FAS was smoothed using a Parzen window with a392

bandwidth of 0.2 Hz. Even when the values of𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30 are nearly the same, it is evident that the characteristics393

of the ground motions differ significantly. In Figure 16, the generated ground motion in (i) has large amplitude, and has a394

peak near 8 Hz in FAS, whereas the generated ground motion in (ii) has relatively smaller amplitude with a peak near 5 Hz395

in FAS. Examining the corresponding shear-wave velocity profiles, the data for case (i) reveals a velocity profile where the396

first-layer has a shear-wave velocity of 𝑣0−5 = 134m/s, and the second-layer has a shear-wave velocity of 𝑣0−5 = 512m/s. This397

indicates a soft upper layer of 5 meters, underlain by a harder layer beyond 5 meters. Similarly, in case (ii), the top 5 meters398

also consists of a soft layer, but 𝑣0−5 is slightly larger than in (i), and the difference in shear-wave velocities between the first399
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and second layer is smaller. The high frequency vibrations are amplified due to multiple reflections at the soft surface soil,400

suggesting that the generated data in (i) shows larger amplitude and higher predominant frequency compared to (ii) due to401

this amplification.402

Furthermore, the data in (iii), while having similar amplitude and shear-wave velocity profile compared to (ii), contain403

many low frequency components. The 𝑍1.0 and 𝑍1.4 values for (iii) are relatively high, indicating that the generated ground404

motions are also consistent with the effect of deep sedimentary layers. The GMGM is capable of representing characteristic405

of ground motions that cannot be explained solely by 𝑉S30 value.406

Distribution of generated ground motions with specified magnitude, distance, and detailed site407

conditions408

Our proposed GMGMmodels the joint distribution 𝑝(𝐱, 𝐲) of groundmotion data 𝐱 and corresponding condition labels 𝐲, so409

it cannot directly evaluate the conditional distribution 𝑝(𝐱 ∣ 𝐲). When applying our proposed method to hazard analysis, the410

distribution 𝑝(𝐱 ∣ 𝐬∗) under a specific scenario 𝐬∗ can be evaluated using rejection sampling (Tavaré et al., 1997) as follows.411

1. Using the trained GMGM, generate𝑁 data points to obtain the dataset𝒟= {(𝐱𝑖, 𝐲𝑖) ∣ 𝑖 = 1,⋯ , 𝑁}. Suppose that the joint412

distribution is represented by this dataset.413

𝑝(𝒟, 𝐙) =
𝑁∏

𝑖=1
𝑝(𝐱𝑖, 𝐲𝑖 ∣ 𝐳𝑖)𝑝(𝐳𝑖) (12)

where 𝑝(𝐱, 𝐲 ∣ 𝐳) is modeled by the GMGM, 𝐙= {𝐳1, ⋯ , 𝐳𝑁}, and 𝑝(𝐳) is the prior distribution of the noise vector.414

2. Define the scenario to be specified as a random variable 𝐬. Here, 𝐬 can be defined as 𝐲 itself or as a subvector of 𝐲.415

3. For a given scenario 𝐬∗, using some distance metric 𝑑(⋅, ⋅) and a threshold 𝜖 > 0, the conditional distribution 𝑝(𝐱 ∣ 𝐬∗) can416

be evaluated as follows:417

𝑝(𝐱 ∣ 𝐬∗) ≃ ∫
𝐙
∫
𝐘
𝑝(𝐱, 𝐲 ∣ 𝐳)𝑝(𝐳)𝕀(𝑑(𝐬, 𝐬∗) ≤ 𝜖)d𝐲d𝐳 (13)

where 𝐘= {𝐲1, ⋯ , 𝐲𝑁} and 𝕀(⋅) is an indicator function.418

In GANsmodel, for a given input 𝐳, a fixed output 𝐱, 𝐲 is obtained. Thus, the 𝑝(𝐱, 𝐲 ∣ 𝐳) is a delta function, and the probability419

distribution 𝑝(𝐱, 𝐲) is represented by the generated dataset𝒟 through a Monte Carlo representation. Therefore, the integral420

calculation in equation 13 can be performed as follows:421

1. From the generated dataset𝒟, obtain the corresponding {𝐬𝑖 ∣ 𝑖 = 1,⋯𝑁} for each 𝐲𝑖 .422

2. For each 𝐬𝑖, accept those that satisfy 𝑑(𝐬𝑖, 𝐬∗) ≤ 𝜖 and reject the rest.423

3. Retrieve the corresponding 𝐱∗𝑖 from𝒟 for each accepted 𝐬∗𝑖 .424
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The 𝐱∗𝑖 obtained through the above procedure can be regarded as samples following the distribution 𝑝(𝐱 ∣ 𝐬∗). It is important425

to note that to evaluate the distribution 𝑝(𝐱 ∣ 𝐬∗) using this procedure, the number of generated data points𝑁 of the dataset𝒟426

must be sufficiently large. In this paper, we set𝑁 = 100, 000. This decisionwas based on the observation that the distributions427

shown in Figure 7–9 remain relatively unchanged with further data generation, and that a sufficient number of generated428

samples could be secured through rejection sampling as examined below. Even if other examinations require a larger amount429

of data, analyses with a larger 𝑁 can be conducted at a reasonable computational cost, as the computational cost of GANs430

data generation is low. In this subsection, we examine the distribution of generated ground motions when some different431

scenarios are specified.432

Initially, we consider a simple scenario where 𝐬 = (𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30)T. Generated data fitting the following criteria were433

sampled, and 131 data are obtained:434

• 5.9 ≤𝑀𝑊 ≤ 6.1435

• 25 km≤𝑅𝑅𝑈𝑃 ≤ 35 km436

• 404m/s≤𝑉S30 ≤ 426m/s437

We use the Euclidean distance as the metric 𝑑(⋅, ⋅) for each element of 𝐬. The values of 𝜖 were also determined for each438

element of 𝐬. The black dashed line with circles in Figure 17 (a) shows the mean and standard deviation of the acceleration439

spectra for all 131 sampled generated ground motions. Among the 131 samples, we further extracted two clusters that share440

similar shear-wave velocity profiles (Cases 1 and 2), i.e., considering 𝐬 = (𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, 𝑣0−5, 𝑣5−10, 𝑣10−20)T. The red dashed441

line with squares (Case 1) and blue dotted line with triangles (Case 2) in Figure 17 (a) shows themean acceleration spectra of442

the extracted clusters, and their corresponding shear-wave velocity profiles of each sampled data are shown in Figure 17 (b).443

Note that the standard deviation of Case 1 and Case 2 are calculated together to ensure a sufficient sample size as follows:444

𝜎 =

√
(𝑛1 − 1)𝜎̂21 + (𝑛2 − 1)𝜎̂22

𝑛1 + 𝑛2 − 2 (14)

where 𝑛1 and 𝑛2 are the number of data in Case 1 and 2, respectively, and 𝜎̂21 and 𝜎̂
2
2 are the unbiased variance of data in Case 1445

and 2, respectively. Themean acceleration spectra varies depending on the soil profile. For example, Case 1 has relatively soft446

soil condition of top 5 meters, and the spectral acceleration of Case 1 at short period range had larger values. The standard447

deviations at each period have decreased by specifying the shear-wave velocity profile, and the averaged standard deviation448

for each period of Case 1 and Case 2 results in about 0.35. According to the study by Morikawa et al. (2008), the standard449

deviation (total of the within-event and between-events) of the 5% damped spectral acceleration at specific station generally450

ranges between 0.35 and 0.45. Hikita and Tomozawa (2023) studied the variability of spectral acceleration of single-path451

ground motions, and the standard deviations approximately ranged between 0.3 and 0.5 in their examination. Although a452
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strict comparison is challenging due to different settings, the standard deviation obtained in this study is considered to be453

generally reasonable.454

To examine the relationship between the characteristics of generated groundmotions and the shear-wave velocity profiles,455

the amplification spectra at the surface were calculated for Case 1 and Case 2 in Figure 17, considering the third layer (10-456

20 m) as the reference layer. The analysis was based on the multiple reflection theory, assuming a linear layered structure.457

Constant𝑄𝑠 value of 20 was used for damping, and the soil density of each layer was estimated from the shear-wave velocities458

using the relationships of Gardner et al. (1974). Figure 17 (c) shows the amplification spectra for Case 1 and Case 2, as well as459

the logarithmicmean of the FAS of the corresponding generated groundmotions. The predominant frequencies of the ground460

motion data match the peaks in the amplification spectra. Additionally, it can be observed that in Case 1, the difference in461

shear-wave velocity between the first and third layers is greater than in Case 2, exhibiting higher predominant frequency.462

Compared to Case 2, the FAS of Case 1 hasmore frequency components around 2Hz. The values of𝑍1.0 for the generated data463

in Case 1 are generally between 30 and 60 meters, whereas the values for the generated data in Case 2 are approximately 4.0464

meters. This indicates that the frequency characteristics are consistent with the characteristics of the amplification by deep465

sedimentary layers. It can be concluded that the frequency characteristics of the generated ground motions are generally466

consistent with the corresponding shear-wave velocity profiles. However, it should be noted that this analysis considers467

linear site amplification. Given the response spectra values of Cases 1 and 2, it is necessary to consider the nonlinear site468

response, and this examination focuses on the rough peaks of the spectra.469

Data interpolation by GMGM470

GANs are known to generate new data samples by interpolating the distribution of a learned dataset (Luzi et al., 2021). In471

this subsection, we evaluate the data interpolation of the GMGM for generated ground motions and condition labels.472

First, Figure 8 (h) compares the distribution of 𝑀𝑊 and 𝑉S30 between the observed records dataset and generated data.473

While no generated data correspond to the slightly included area of 𝑉S30 > 1000 m/s in the training dataset, new data have474

been generated within the region where observed records are distributed. For instance, there are no observed records cor-475

responding to𝑀𝑊 = 6.5 in the dataset, yet the GMGM also generates data for such regions. Looking at the residual plots in476

Figure 14, the generated results for𝑀𝑊 = 6.5 are consistent with the predictions of the MF13 GMM, indicating the validity477

of the generated ground motions. The GMGM can generate data for combinations of condition labels that are not included478

in the observed record database.479

Next, we examine the case specifying𝑀𝑊 ,𝑅𝑅𝑈𝑃, and the shear-wave velocity profile.We again use the six generated ground480

motions in Case 2 in Figure 17, which were selected from the 100,000 generated data to have almost identical values of𝑀𝑊 ,481

𝑅𝑅𝑈𝑃, 𝑉S30, and shear-wave velocity profile 𝑣0−5, 𝑣5−10, and 𝑣10−20. Table 2 lists the values of𝑀𝑊 , 𝑅𝑅𝑈𝑃, and site conditions482

of the six generated ground motions in Case 2. Although 𝑍1.0 and 𝑍1.4 were not specified during data selection, these val-483
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TABLE 2
Values of 𝑴𝑾 , 𝑹𝑹𝑼𝑷, and site conditions of the six generated ground motions of Case 2 in Figure 17 (generated Data 1
to 6) and site condition values of K-NET station YMG007. The values of the surface soil conditions of the YMG007
station were calculated using the P-S logging data of K-NET database. Since only shear-wave velocity profile up to 10
meters has been obtained at YMG007 station in K-NET database, it is assumed that the shear-wave velocity from 10
meters to 20 meters is identical to the upper layer. Noted that the values of 𝒁𝟏.𝟎 and 𝒁𝟏.𝟒 represent the depth from the
engineering bedrock as discussed in the TRAINING DATASETS section.

- 𝑀𝑊 𝑅𝑅𝑈𝑃 (km) 𝑉S30 𝑣0−5 (m/s) 𝑣5−10 (m/s) 𝑣10−20 (m/s) 𝑍1.0 (m) 𝑍1.4 (m) Data type

Data 1 6.0 29 416 249 377 422 3.9 10 Generated
Data 2 6.0 33 411 246 378 414 4.2 11 Generated
Data 3 6.0 31 418 254 380 420 4.0 10 Generated
Data 4 6.0 32 417 248 387 425 4.0 10 Generated
Data 5 6.0 33 420 249 382 430 3.9 10 Generated
Data 6 6.0 35 416 247 378 424 3.9 10 Generated

YMG007 - - 418 260 400 400 4.0 10 Observed

ues are also nearly identical across all six ground motions. To investigate the cause of this trend, Table 2 also presents the484

site conditions of the K-NET station YMG007, whose records were included in the training dataset. The shear-wave veloc-485

ities, 𝑣0−5, 𝑣5−10, and 𝑣10−20, and the values of 𝑍1.0 and 𝑍1.4 at the YMG007 station closely align with those of generated486

Data 1–6, indicating that the generated ground motions are dominated by the characteristics of the observed records at the487

YMG007 station. This suggests that while the GMGM can interpolate data when only a few condition labels are considered,488

as shown in Figure 8, such interpolation becomes more challenging as the number of considered condition labels increases.489

This is because the number of corresponding observed records may become insufficient, leading to the generated data being490

dominated by specific observed records. This will be discussed further in CONCLUSION AND DISCUSSION section.491

Finally, we examine the case where only site conditions were specified. At YMG007 station, two observed records from dif-492

ferent earthquakes are obtained in our training dataset. The relationships between these earthquakes and theYMG007 station493

are shown in Figure 18. Then, generated data having the same site conditions as YMG007 station are sampled, corresponding494

to the following criteria:495

• 225m/s≤ 𝑣0−5 ≤ 275m/s496

• 355m/s≤ 𝑣5−10 ≤ 405m/s497

• 395m/s≤ 𝑣10−20 ≤ 445m/s498

• 3m≤𝑍1.0 ≤ 5m499

• 9m≤𝑍1.4 ≤ 11m500

Figure 19 shows the magnitude-distance distribution of the two observed records at YMG007 station and the sampled gen-501

erated data. Although no data have been generated for region where 𝑅𝑅𝑈𝑃 is approximately 100 km, it is evident that data502

corresponding to combinations of magnitude and distance not included in the observed records have been generated even503

when specifying detailed site conditions. Therefore, even when the number of considered condition labels is increased, the504

GMGM is capable of generating data not included in the observed records dataset, provided that the number of condition505
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TABLE 3
Rupture distance in the earthquake that occurred on March 12, 2011, in northern Nagano Perfecture and site
conditions of the target KiK-net staions in Figure 21.

Station 𝑅𝑅𝑈𝑃 (km) 𝑉S30 (m/s) 𝑍1.4 (m)

TCGH07 77.6 419.5 97.6
NGNH26 70.9 300.5 119.0
NIGH11 25.9 375.0 1651.3

labels used for interpolation remains small. For the data for 42 km≤𝑅𝑅𝑈𝑃 ≤ 44 km in Figure 19, time history waveforms and506

their corresponding acceleration spectra and shear-wave velocity profiles are shown in Figure 20. The frequency character-507

istics of generated ground motions are generally similar to the observed record, and the magnitude scaling of the amplitude508

is generally appropriate.509

Comparison with the observed records of KiK-net510

To examine whether the proposed GMGM appropriately considers detailed site conditions, we compared the generated511

ground motions with the observed records at KiK-net stations that were not used for the GMGM training. For the target512

earthquake, we selected the earthquake that occurred on March 12, 2011, in northern Nagano Prefecture. Note that the513

observed records from the K-NET stations for this earthquake are included in the GMGM training dataset. The moment514

magnitude was 6.2, and the focal depth was 8.4 km.We selected three KiK-net observation stations: TCGH07, NGNH26, and515

NIGH11. The epicenter of the earthquake and the locations of the stations are shown in Figure 21, and the rupture distances516

and site conditions for each station are shown in Table 3.517

For each target station, the values of 𝑣0−5, 𝑣5−10, and 𝑣10−20 were derived from the P-S logging data of the KiK-net database.518

From 100,000 generated data, we sampled the data that satisfied the following conditions:519

• 6.1 ≤𝑀𝑊 ≤ 6.3.520

• Rupture distance within [𝑅𝑅𝑈𝑃 − 5, 𝑅𝑅𝑈𝑃 + 5] for each target station.521

• Shear-wave velocity of the 𝑖-th layer 𝑣𝑖(𝑖 = 1, 2, 3) within [0.9𝑣𝑖, 1.1𝑣𝑖] for each target station.522

As a result, 13, 30, and 8 generated data samples were selected for the TCGH07, NGNH26, andNIGH11 stations, respectively.523

The 5% damped response spectra of the observed records and the sampled generated groundmotions are compared in Figure524

22. Additionally, the median and±1 standard deviation interval of theMF13 GMMpredictions are also shown. Note that the525

observed records are shown for the NS and EW components at the ground surface. The shear-wave velocity profiles of the526

stations and generated data are illustrated at the right panel of the response spectra. For TCGH07 (Figure 22 (a)), although527

the spectral accelerations of the observed records are slightly smaller in the period range above 0.5 s, the response spectra of528

the observed records and the generated groundmotions generally match. Particularly for components with periods below 0.3529

s, the observed records and generated ground motions are in good agreement. In contrast, for NGNH26 (Figure 22 (b)), the530
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spectral accelerations of the observed records are smaller across a wide period range, showing a tendency for the generated531

ground motions to be overestimated. The NGNH26 station is located near the Itoigawa–Shizuoka Tectonic Line (ISTL), and532

the region between the hypocenter and the ISTL has been noted as having a low 𝑄 attenuation structure (Nakamura and533

Uetake (2002); Nakajima andMatsuzawa (2017)). In the proposed GMGM, propagation path effects aremodeled solely based534

on rupture distance. As a result, the GMGM could not adequately evaluate the influence of such propagation path structures.535

For the NIGH11 station (Figure 22 (c)), the response spectra of the observed records and generated ground motions are in536

good agreement compared to the analysis results at other stations. This is considered to result from the relatively short537

rupture distance at the NIGH11 station. The observed record at the NIGH11 station may not be significantly affected by the538

unmodeled propagation path effects.539

In summary, under scenarios that consider detailed site conditions, our proposed GMGM can generally represent the540

characteristics of observed records at the stations not used for training. However, our GMGMcould not appropriately capture541

the characteristics of the observed records that may be influenced by attenuation structures of the propagation path. To542

evaluate the characteristics of ground motions at specific sites, it is essential to incorporate such effect in more detail within543

the GMGM.544

CONCLUSION AND DISCUSSION545

In this study, we developed a GMM (GMGM) for crustal earthquakes in Japan that can directly generate ground motion546

time histories with specifying detailed site conditions. The proposed GMGM were developed based on a type of deep gener-547

ative model, called styleGAN2, and a novel neural network architecture that could serve as a generative model with detailed548

condition labels were also proposed. The neural network architecture of the GMGM is capable of accounting for site condi-549

tions with five values, [𝑉S5, 𝑉S10, 𝑉S20, 𝑍1.0, 𝑍1.4], in addition to magnitude and distance information. We demonstrated that550

the characteristics of the generated ground motions are consistent with these condition labels, and ground motions with551

engineering-significant characteristic can be generated. Furthermore, the amplifications by shallow soil and deep sedimen-552

tary layer were shown to be accurately represented, and the GMGM’s magnitude and distance scaling were shown to match553

those of empirical GMMs. Additionally, by modeling the surface soil in three layers, the GMGM could express differences554

in ground motion characteristics that could not be explained solely by 𝑉S30, and generated new data samples with different555

magnitude-distance settings even when detailed site conditions were specified.556

The GMGM constructed in this study does not always produce high-quality ground motions, in some cases, significant557

noises occur at the end of the waveform. Figure 23 shows an example of such generated result. This type of data tends to558

be generated, although infrequently, under combinations of condition labels where there are fewer data points in training559

dataset. The cause of this tendency might be attributed to the influence of the vibrations included in the observed records.560

Subsequent vibrations believed to be caused by aftershocks were eliminated, as stated in the data preprocessing subsection.561
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On the other hand, aftershocks left some vibrations that were difficult to pinpoint. Therefore, the observed records in our562

training dataset might include vibrations like those in the time interval from 40 to 60 s in Figure 23, and it is conceivable that563

the GMGM has learned such tendencies. The vibrations seen after about 75 s in Figure 23 are not mere noise but resemble564

a ground motion. This could be due to the characteristics of convolutional neural networks (CNNs). The parts of neural565

networks of the GMGM have constructed by CNNs, which are known to have a property called equivariance to translation566

due to parameter sharing (Goodfellow et al., 2016). It is important to improve the performance of the GMGM by carefully567

examining the data preprocessing procedures and the configuration of the neural networks suitable for generating ground568

motion data.569

GANs generate new data samples by interpolating the distribution of learned dataset. Although interpolation could570

be performed when a few condition labels are specified, the site conditions specified by the five-dimensional vector571

[𝑉S5, 𝑉S10, 𝑉S20, 𝑍1.0, 𝑍1.4] were not well-interpolated. This issue might stem from the curse of dimensionality. In the com-572

piled dataset, there are 728 observation stations. The distribution of soil conditions defined by five-dimensional vectors is573

relatively high-dimensional considering this number of stations. Data points may not be sufficiently dense for effective inter-574

polation when many conditions are specified. This challenge is one of the difficulties in data-driven approaches. As more575

condition labels are considered in detail for the source, path, and site conditions, the lack of data becomes a more significant576

issue. Potential solutions to this problem about site conditions include increasing the number of observation stations used577

in compiled dataset. The performance of the GMGM may be improved by including observed records at KiK-net stations,578

as they were not used in this investigation. Using simulation-based techniques to estimate ground motion amplifications579

and predict ground motions at the bedrock using GMGMs could be another way to solve this problem. This approach would580

require detailed site condition information, and there is a possibility of bias because of the one-dimensional-based modeling581

(Zhu et al., 2023). However, by combining the GMGM with simulation-based methods, it may be possible to address the582

issues caused by the lack of data mentioned above in constructing the GMGM.583

Previous studies applying GANs to GMM (Florez et al. (2022); Esfahani et al. (2022); Shi et al. (2024)) have constructed584

models based on cGAN, specifying condition labels for generating ground motions. In contrast, this study generates ground585

motions and condition labels from normal random inputs without specifying such labels. The advantages and disadvantages586

of our method compared to cGAN basedmethod are as follows. An advantage is its suitability for generating groundmotions587

when detailed condition labels are specified. Asmentioned earlier, GANs approximate the distribution of the learned dataset,588

making them unsuitable for generating data that would be a complete extrapolation from the dataset range. For example, in589

the dataset used in this study, themomentmagnitudes of the records range from5.0 to 7.1,making it difficult for theGMGMto590

generate groundmotions for magnitudes like 4 or 8. The distribution of condition labels within the seven-dimensional space591

is sparse, considering the number of available observed records. Since cGAN requires the specification of condition labels592

to generate data, such sparsity could make it challenging to appropriately set these labels without exceeding the applicable593
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range. Consequently, models that specify more detailed condition labels may generate ground motions that ideally should594

not be generated. Such problems can be avoided by generating condition labels with ground motions at the same time.595

On the other hand, a disadvantage of our method is the time required to generate ground motions that matches specific596

condition labels. The frequency of generated data depends on its occurrence in the training dataset, which means data for597

less common conditions is less likely to be generated. To utilize the GMGM in the filed of earthquake engineering, it is598

necessary to construct a framework that incorporates rare-event simulation techniques (Bucklew and Bucklew, 2004), which599

are studied in fields such as structural reliability (Au and Beck, 2001).600

Additionally, while this study constructed GMGMs for one horizontal component of ground motions occurred in crustal601

earthquakes, it is also important from the viewpoint of earthquake engineering to predict groundmotions for subduction zone602

earthquakes and to simultaneously predict three components. Expanding the application range of the GMGM is essential603

and is a future task. Additionally, our proposed GMGM is a data-driven generative model and cannot be applied to scenarios604

corresponding to extrapolation areas that are entirely absent from the learned dataset. For predictions that include such areas,605

utilizing analysis results fromphysics-based groundmotion simulation can be considered. In hazard analysis and engineering606

applications, it is expected that by using our proposed GMGM and simulation methods according to the scenario, a broader607

range of problem settings can be addressed. This type of analysis also remains a future task.608

DATA AND RESOURCES609

The strong motion records and the shear-wave velocity values of the surface soil used in this study can be downloaded through the610

website of the National Research Institute for Earth Science and Disaster Resilience (NIED; https://www.kyoshin.bosai.go.611

jp/kyoshin/). The moment magnitude was obtained from the NIED F-net database https://www.fnet.bosai.go.jp/, and612

the values of 𝑍1.0 and 𝑍1.4 were obtained from the NIED J-SHIS website https://www.j-shis.bosai.go.jp/. The information613

regarding the locations of the active segments of the Itoigawa–Shizuoka Tectonic Line was obtained from the Active Fault Database of614

Japan (https://gbank.gsj.jp/activefault/index_e_gmap.html). The program code used in deep learning is available in615

the GitHub repository https://github.com/Mat-main-00/ss_gmgm. The list of earthquakes and observation stations used for616

training is also available on this GitHub repository. The supplementary material is available as a separated document, containing supple-617

mental figures S1–S8, which include the ground motion waveforms generated by the constructed model and the distribution in the latent618

space.619
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List of figure captions821

• Figure 1. Map of the training dataset showing the locations of the earthquake epicenters (circles) and stations (triangles).822

• Figure 2. Magnitude-distance distribution of the compiled training dataset.823

• Figure 3. Diagram of overall architecture of the GMGM.824

• Figure 4. Diagram of the neural network architecture of the proposed GMGM. (a) is the generator, and (b) is the825

discriminator.826

• Figure 5. Examples of the ground motion waveforms of observed records. The data in each column correspond to the827

value of𝑀𝑊 shown at the top. Each panel shows the associated 𝑅𝑅𝑈𝑃 and 𝑉S30 values.828

• Figure 6. Examples of the ground motion waveforms generated by the GMGM. The data in each column correspond to829

the value of𝑀𝑊 shown at the top. Each panel shows the associated 𝑅𝑅𝑈𝑃 and 𝑉S30 values.830

• Figure 7. Comparison of the cumulative distribution functions (CDF) for five indices of groundmotions. The blue dashed831

line is the CDF of observed records, and red solid line is the CDF of generated ground motions.832

• Figure 8. Comparison of the condition label distributions between observed records and generated data. (a) Rupture833

distance and moment magnitude, (b) moment magnitude and PGA, (c) rupture distance and PGA, (d) 𝑉S5 and 𝑉S10, (e)834

𝑉S10 and𝑉S20, (f)𝑉S20 and𝑍1.0, (g)𝑍1.0 and𝑍1.4, and (h)𝑀𝑊 and𝑉S30. In each case, the left side represents the distribution835

of observed records, and the right side represents the distribution of generated data.836

• Figure 9. The distribution of latent variables𝐰 reduced to two-dimensional data using UMAP. Each dot corresponds to837

a sample of the generated data, and is color coded according to the values of (a) Arias intensity, (b) moment magnitude,838

and (c) rupture distance.839

• Figure 10. Comparison of the CDF of the pulse indicator values. The blue dashed line represents the observed records,840

and red solid line represents the generated ground motions.841

• Figure 11. Examples of the velocity waveforms and their corresponding extracted pulses. The left column is the observed842

record and right column is the generated ground motion. The scenario𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30 of each data is shown at the843

top of each column.844

• Figure 12. Comparison of the logarithmic means and logarithmic standard deviations of the FAS across three different845

𝑀𝑊 ranges (a-c). Panels (a), (b), and (c) have three different 𝑅𝑅𝑈𝑃 and 𝑉S30 scenarios, respectively. For each panel, the846

blue dashed line corresponds to observed records, and the red solid line corresponds to generated ground motions.847

• Figure 13. Comparison of the 5% damped spectral acceleration values at periods 𝑇 = 0.2 s and 1.0 s between the gener-848

ated ground motions and prediction results from the empirical GMMs. (a) represents the comparison results with the849

MF13 GMM across three different 𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.4 scenarios. (b) represents the comparison results with the850

ASK14GMMacross three different𝑀𝑊 ,𝑅𝑅𝑈𝑃,𝑉S30, and𝑍1.0 scenarios. The purple circles represents the generated ground851
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motions, the blue solid line represents the median of the GMMs prediction, and the blue dashed line represents the ±1852

standard deviation interval. The corresponding values of𝑀𝑊 and soil conditions are shown at the top of each panel.853

• Figure 14. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and854

the median predictions of the MF13 GMM. Grey circles represent the residuals for each generated data, blue squares855

indicate the mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the856

residuals for a period of 𝑇 = 0.2 s on the left and 𝑇 = 1.0 s on the right.857

• Figure 15. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and858

the median predictions of the ASK14 GMM. Grey circles represent the residuals for each generated data, blue squares859

indicate the mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the860

residuals for a period of 𝑇 = 0.2 s on the left and 𝑇 = 1.0 s on the right.861

• Figure 16. Examples of ground motion waveforms, FAS, shear-wave velocity profiles of generated data with almost same862

𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30 values.863

• Figure 17. The distribution of the generated ground motions with almost same magnitude, distance, and site conditions864

scenarios. Panel (a) represents themeans and standard deviations (in natural log units) of 5% damped acceleration spectra865

for three scenarios. The black solid line with circles represent the distribution of generated acceleration spectra with866

specified values of 𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30. The red dashed line with squares (Case 1) and blue dotted line with triangles867

(Case 2) indicate the mean acceleration spectra of generated ground motions, which include additional specifications of868

the shear-wave velocity profiles along with the aforementioned 𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30. The standard deviations for Case869

1 and Case 2 are calculated together to ensure a sufficient sample size and are represented by a green dashed line with870

inverted triangles. Panel (b) represents the corresponding shear-wave velocity profiles for each generated data of the871

three scenarios. Panel (c) shows the logarithmic mean of the FAS of the generated ground motions for Case 1 and Case872

2 (represented by red and blue solid lines, respectively), along with the amplification spectra (represented by the purple873

dashed lines) derived from the shear-wave velocity profiles in Panel (b).874

• Figure 18. The locations of the YMG007 K-NET station (triangle) and earthquake epicenters (circles) whose ground875

motions were observed at YMG007 station and contained in our training dataset. The focal mechanisms were obtained876

from F-net database.877

• Figure 19. Magnitude-distance distribution of the observed records at YMG007 K-NET station (blue circle) and generated878

ground motions (red cross) with site conditions similar to YMG007 station.879

• Figure 20. Ground motion waveforms (a), their corresponding acceleration spectra (b), and shear-wave velocity profiles880

(c) that satisfy the condition 42 km≤𝑅𝑅𝑈𝑃 ≤ 44 km in Figure 19. The blue solid line represents the observed record at the881

YMG007K-NET station, and red dashed line represent the generated data. The shear-wave velocity profile of the YMG007882
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station was modeled with three layers based on the P-S logging data of the K-NET database. All condition label values for883

the data shown in this figure are distributed within the range indicated at the top of the figure.884

• Figure 21. Locations of the epicenter of the earthquake and the target KiK-net stations TCGH07, NGNH26, and NIGH11.885

The focal mechanism of the earthquake was obtained from the F-net database. The green lines represent the active seg-886

ments of the Itoigawa–ShizuokaTectonic Line (ISTL) obtained from theActive FaultDatabase of Japan (National Institute887

of Advanced Industrial Science and Technology, 2024).888

• Figure 22. Comparison of shear-wave velocity profiles (left panels) and 5% damped response spectra (right panels) of the889

observed records versus generated ground motions for the target KiK-net stations: (a) TCGH07, (b) NGNH26, and (c)890

NIGH11. The blue solid lines represent the observed records, the red dashed lines represent the generated data, the green891

dash-dot lines represent the median of the MF13 GMM predictions, and the green dotted lines represent the ±1 standard892

deviation interval of the MF13 GMM predictions.893

• Figure 23. An example of generated ground motion waveform with subsequent oscillations showing large amplitude894

noise. The values at the top of this figure represent the corresponding condition label values.895
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Figure 1. Map of the training dataset showing the locations of the earthquake epicenters (circles) and stations (triangles).
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Figure 2. Magnitude-distance distribution of the compiled training dataset.
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Figure 4. Diagram of the neural network architecture of the proposed GMGM. (a) is the generator, and (b) is the discriminator.
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Figure 5. Examples of the ground motion waveforms of observed records. The data in each column correspond to the value of 𝑀𝑊
shown at the top. Each panel shows the associated 𝑅𝑅𝑈𝑃 and 𝑉S30 values.
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Figure 6. Examples of the ground motion waveforms generated by the GMGM. The data in each column correspond to the value of
𝑀𝑊 shown at the top. Each panel shows the associated 𝑅𝑅𝑈𝑃 and 𝑉S30 values.

Figure 7. Comparison of the cumulative distribution functions (CDF) for five indices of ground motions. The blue dashed line is the
CDF of observed records, and red solid line is the CDF of generated ground motions.
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Figure 8. Comparison of the condition label distributions between observed records and generated data. (a) Rupture distance and
moment magnitude, (b) moment magnitude and PGA, (c) rupture distance and PGA, (d) 𝑉S5 and 𝑉S10, (e) 𝑉S10 and 𝑉S20, (f) 𝑉S20
and 𝑍1.0, (g) 𝑍1.0 and 𝑍1.4, and (h) 𝑀𝑊 and 𝑉S30. In each case, the left side represents the distribution of observed records, and the
right side represents the distribution of generated data.
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(b) (c)(a)

Figure 9. The distribution of latent variables 𝐰 reduced to two-dimensional data using UMAP. Each dot corresponds to a sample of
the generated data, and is color coded according to the values of (a) Arias intensity, (b) moment magnitude, and (c) rupture
distance.
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Figure 10. Comparison of the CDF of the pulse indicator values. The blue dashed line represents the observed records, and red
solid line represents the generated ground motions.
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Figure 11. Examples of the velocity waveforms and their corresponding extracted pulses. The left column is the observed record
and right column is the generated ground motion. The scenario 𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30 of each data is shown at the top of each
column.
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(a)

(b)

(c)

Figure 12. Comparison of the logarithmic means and logarithmic standard deviations of the FAS across three different 𝑀𝑊 ranges
(a-c). Panels (a), (b), and (c) have three different 𝑅𝑅𝑈𝑃 and 𝑉S30 scenarios, respectively. For each panel, the blue dashed line
corresponds to observed records, and the red solid line corresponds to generated ground motions.
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(a) (b)

Figure 13. Comparison of the 5% damped spectral acceleration values at periods 𝑇 = 0.2 s and 1.0 s between the generated
ground motions and prediction results from the empirical GMMs. (a) represents the comparison results with the MF13 GMM
across three different 𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.4 scenarios. (b) represents the comparison results with the ASK14 GMM across
three different 𝑀𝑊 , 𝑅𝑅𝑈𝑃, 𝑉S30, and 𝑍1.0 scenarios. The purple circles represents the generated ground motions, the blue solid line
represents the median of the GMMs prediction, and the blue dashed line represents the ±1 standard deviation interval. The
corresponding values of 𝑀𝑊 and soil conditions are shown at the top of each panel.
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Figure 14. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and the
median predictions of the MF13 GMM. Grey circles represent the residuals for each generated data, blue squares indicate the
mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the residuals for a
period of 𝑇 = 0.2 s on the left and 𝑇 = 1.0 s on the right.
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Figure 15. Residual plots between the 5% damped spectral acceleration of ground motions generated by the GMGM and the
median predictions of the ASK14 GMM. Grey circles represent the residuals for each generated data, blue squares indicate the
mean, and orange bars show the median along with the 16th and 84th percentiles. Each panel represents the residuals for a
period of 𝑇 = 0.2 s on the left and 𝑇 = 1.0 s on the right.

Figure 16. Examples of ground motion waveforms, FAS, shear-wave velocity profiles of generated data with almost same 𝑀𝑊 ,
𝑅𝑅𝑈𝑃, and 𝑉S30 values.
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(b)

(c)

Figure 17. The distribution of the generated ground motions with almost same magnitude, distance, and site conditions scenarios.
Panel (a) represents the means and standard deviations (in natural log units) of 5% damped acceleration spectra for three
scenarios. The black solid line with circles represent the distribution of generated acceleration spectra with specified values of 𝑀𝑊 ,
𝑅𝑅𝑈𝑃, and 𝑉S30. The red dashed line with squares (Case 1) and blue dotted line with triangles (Case 2) indicate the mean
acceleration spectra of generated ground motions, which include additional specifications of the shear-wave velocity profiles along
with the aforementioned 𝑀𝑊 , 𝑅𝑅𝑈𝑃, and 𝑉S30. The standard deviations for Case 1 and Case 2 are calculated together to ensure a
sufficient sample size and are represented by a green dashed line with inverted triangles. Panel (b) represents the corresponding
shear-wave velocity profiles for each generated data of the three scenarios. Panel (c) shows the logarithmic mean of the FAS of
the generated ground motions for Case 1 and Case 2 (represented by red and blue solid lines, respectively), along with the
amplification spectra (represented by the purple dashed lines) derived from the shear-wave velocity profiles in Panel (b).
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Figure 18. The locations of the YMG007 K-NET station (triangle) and earthquake epicenters (circles) whose ground motions were
observed at YMG007 station and contained in our training dataset. The focal mechanisms were obtained from F-net database.
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Figure 19. Magnitude-distance distribution of the observed records at YMG007 K-NET station (blue circle) and generated ground
motions (red cross) with site conditions similar to YMG007 station.
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Figure 20. Ground motion waveforms (a), their corresponding acceleration spectra (b), and shear-wave velocity profiles (c) that
satisfy the condition 42 km≤𝑅𝑅𝑈𝑃 ≤ 44 km in Figure 19. The blue solid line represents the observed record at the YMG007 K-NET
station, and red dashed line represent the generated data. The shear-wave velocity profile of the YMG007 station was modeled
with three layers based on the P-S logging data of the K-NET database. All condition label values for the data shown in this figure
are distributed within the range indicated at the top of the figure.
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Figure 21. Locations of the epicenter of the earthquake and the target KiK-net stations TCGH07, NGNH26, and NIGH11. The focal
mechanism of the earthquake was obtained from the F-net database. The green lines represent the active segments of the
Itoigawa–Shizuoka Tectonic Line (ISTL) obtained from the Active Fault Database of Japan (National Institute of Advanced
Industrial Science and Technology, 2024).
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(c)

Figure 22. Comparison of shear-wave velocity profiles (left panels) and 5% damped response spectra (right panels) of the
observed records versus generated ground motions for the target KiK-net stations: (a) TCGH07, (b) NGNH26, and (c) NIGH11.
The blue solid lines represent the observed records, the red dashed lines represent the generated data, the green dash-dot lines
represent the median of the MF13 GMM predictions, and the green dotted lines represent the ±1 standard deviation interval of the
MF13 GMM predictions.
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Figure 23. An example of generated ground motion waveform with subsequent oscillations showing large amplitude noise. The
values at the top of this figure represent the corresponding condition label values.
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